簡易檢索 / 詳目顯示

研究生: Iqbaal Abdurrokhman
Iqbaal - Abdurrokhman
論文名稱: 含Good’s 緩衝劑離子液體[TBP][TAPS]雙成分混合物的熱物性質研究
Thermophysical Properties of Binary Mixtures Containing Good’s Buffer Ionic Liquid [TBP][TAPS]
指導教授: 李 明 哲
Ming-Jer Lee
口試委員: 陳 立 仁
Li-Jen Chen
陳 良 益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 107
外文關鍵詞: [TBP][TAPS], Good's Buffer Ionic Liquid
相關次數: 點閱:191下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


A novel ionic liquid [TBP][TAPS] derived from basic hydroxide solution tetra-n-butylphosponium ([TBP][OH], 40 wt% in H2O) and Good’s biological buffer n-[tris(hydroxymethyl)]-3-amino-propanesulfonic acid has been synthesized by simple acid-base neutralization method.
The physical properties, including density, thermal expansion, apparent molar volume, viscosity, conductivity, and molar conductivity have been determined for the binary ionic solutions of [TBP][TAPS] with water, methanol, ethanol, 1-propanol, 2-propanol, or tert-butanol at temperatures from 283.15 K to 333.15 K under atmospheric pressure. Several correlative equations were used to fit the physical properties data. These models include a polynomial equation for density, the Vogel-Fulcher-Tammann equation for viscosity, and the Casteel-Amis equation for conductivity. The correlated results are satisfactory.

Abstract i Acknowledgements ii Table of Content iii List of Figures v List of Tables viii Chapter 1. Introduction 1 1.1. Introduction 1 1.2. Previous Studies 2 1.3. Problem Statement 4 1.4. Research Objective 4 1.5. Outline 5 Chapter 2. Literature Study 6 2.1. Biological Buffers 6 2.2. Introduction of Ionic Liquids 7 2.3. Applications of Ionic Liquids 9 Chapter 3. Experimental Section 13 3.1. Materials 13 3.2. Apparatus and Procedure 14 3.2.1. Density 14 3.2.2. Viscosity 15 3.2.3. Conductivity 16 Chapter 4. Results and Discussion 19 4.1. Results of Density Measurement 19 4.2. Thermal Expansion 20 4.3. Apparent Molar Volumes 20 4.4. Viscosity Measurement Results 21 4.5. Conductivity Measurement Results 22 4.6. Molar Conductivities 23 Chapter 5. Conclusion 88 References 90 Nomenclatures 95

Arce, A., Rodil, E., & Soto, A. (2000). Density, refractive index, and speed of sound for 2ethoxy-2-methylbutane + ethanol + water at 298.15 K. Journal of Chemical Engineering Data, 45(4), 536-539.
Awad, W. H., Gilman, J. W., Nyden, M., Harris Jr, R. H., Sutto, T. E., Callahan, J. (2004). Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites. Thermochimica Acta, 409(1), 3-11.
Battacharjee, A., Luis, A., Santos, J. H., Lopes-da-Silva, J. A., Freire, M. G., Carvalho, P. J. (2014). Thermophysical properties of sulfonium- and ammonium- based ionic liquids. Fluid Phase Equilibria, 381, 36-45.
Calvar, N., Gomez, E., Gonzalez, B., & Domiguez, A. (2010). Experimental vaporliquid equilibria for the ternary system ethanol + water + 1-ethyl-3-methylpyridinium ethylsulfate and the corresponding binary systems at 101.3 kPa: study of the effect of the cation. Journal of Chemical Engineering Data, 55(8), 2786-2791.
Carmichael, A., & Seddon, K. R. (2000). Polarity study of some 1-alkyl-3-methylimidazolium ambient temperature ionic liquids with the solvatochromic dye, nile red. Journal of Physical Organic Chemistry, 13(10), 591-595.
Clifford, G., & Campbell, J. (1951). Densities in the methanol-water system at 25.00°. Journal of American Chemical Society, 73(11), 5449-5449.
Cvjetko, M. C., Radosevic, K., Redovnikovi, I. R., Halambek, J., & Gaurina Srrcek, V. (2014). Designing ionic liquids: the chemical structure role in the toxicity. Ecotoxicology and Environmental Safety, 99, 1-12.
Endres, F., & El Abidin, S. Z. (2006). Air and water stable ionic liquids in physical chemistry. Physical Chemistry Chemical Physics, 18(8), 2101-2116.
Ferreira, C. M., Pinto, I. S., Soares, E. V., & Soares, H. M. (2015). (Un)suitability of the use of pH buffers in biological, biochemical and environmental studies and their interaction with metal ions–a review. RSC Advances, 39(5), 30989-31003.
Gomez, E., Calvar, N., Macedo, E. A., & Dominguez, A.(2012). Effect of the temperature on the physical properties of pure 1-propyl 3-methylimidazolium bis(trifluoromethylsulfonyl)imide and characterization of its binary mixtures with alcohols. Journal of Chemical Thermodynamics, 45(1), 9-15.
Gong, Y.-H., Shen, C., Lu, Y.-Z., Meng, H., & Li, C.-x. (2012). Viscosity and density measurements for six binary mixtures of water(methanol or ethanol) with an ionic liquid ([BMIM][DMP] or [EMIM][DMP]) at atmospheric pressure om the temperature range of (293.15 to 333.15) K. Journal of Chemical & Engineering Data, 57(1), 33-39.
Gonzalez, B., & Gonzalez, E. J. (2014). Physical properties of the pure 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid and its binary mixtures with alcohols. Journal of Chemical Thermodynamics, 68, 109-116.
Gonzalez, E. J., Gonzalez, B., & Macedo, E. A. (2013). Thermophysical properties of the pure ionic liquid 1 butyl-1-methylpyrrolidinium dicyanamide and its binary mixtures with alcohols. Journal of Chemical Engineering Data, 58(6), 1440-448.
Good, N., Winget, G. D., Winter, W., & Connolly, T. (1966). Hydrogen ion buffers for biological research. Biochemistry, 5(2), 467-477.
Gupta, B. S., Taha, M., & Lee, M.-J. (2015). Self-buffering and biocompatible ionic liquid based biological media for enzymatic research. RSC Advances, 5, 106764–106773.
Haraschta, P., Heintz, A., Lehmann, J. K., & Peters, A. (1999). Excess molar volumes and viscosities of binary mixtures of 4-methylpyridine with methanol, ethanol, propan-1-ol, propan-2-ol, butan-2-ol, and 2-methylpropan-2-ol at 298.15 K and atmospheric pressure. Journal of Chemical Engineering Data, 44, 932-935.
Hector, R., & Joan, F. B. (2006). Temperature and composition dependence of the density and viscosity of binary mixtures of water + ionic liquid. Journal of Chemical Engineering Data, 51(6), 2145-2155.
Joshi, S., Aminabhavi, T., & Shukla, S. (1990). Densities and viscosities of binary liquid mixtures of anisole with methanol and benzene. Journal of Chemical Engineering Data, 35(2), 187-189.
Lara, G. S., Josep, R. E., Ferdy, O., G., W. M., & de Haan, A. B. (2009). Density, viscosity, and surface tension of synthesis grade imidazolium, pyridinium, and pyrrolidinium based room temperature ionic liquids. Journal of Chemical Engineering Data, 54(10), 2803-2812.
Martins, M. A., Neves, C. M., Kurnia, K. A., Carvalho, P. J., Rocha, M. A., Santos, L. M., et al. (2016). Densities, viscosities and derived thermophysical properties of water-saturated imidazolium-based ionic liquids. Fluid Phase Equilibria, 407, 188-196.
Mikhail, S., & Kimel, W. (1961). Densities and viscosities of methanol-water mixtures. Journal of Chemical Engineering Data, 6(4), 533-537.
Nikam, P. S., Shirsat, L. N., & Hasan, M. (1998). Density and viscosity studies of binary mixtures of acetonitrile with methanol, ethanol, propan-1-ol, propan-2-ol, butan-1-ol, 2-methylpropan-1-ol, and 2-methylpropan-2-ol at (298.15, 303.15, 308.15, and 313.15) K. Journal of Chemical Engineering Data, 43(5), 732-737.
Pandey, S. (2006). Analytical applications of room-temperature ionic liquids:A review of recent efforts. Analytica Chimica Acta, 556(1), 38-45.
Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chemical Society Reviews, 37(1), 123-150.
Quijada-Maldonado, E., van der Boogaart, S., Lijbers, J., Meindersma, G., & de Haan, A. (2012). Experimental densities, dynamic viscosities and surface tensions of the ionic liquids series 1-ethyl-3-methylimidazolium acetate and dicyanamide and their binary and ternary mixtures with water and ethanol at T = (298.15 to 343.15 K). J. Chem. Thermodynamics, 51, 51–58.
Requejo, P. F., Gonzalez, E. J., Macedo, E. A., & Dominguez, A. (2014). Effect of the temperature on the physical properties of the pure ionic liquid 1-ethyl-3-methylimidazolium methylsulfate and characterization of its binary mixtures with alcohols. Journal of Chemical Thermodynamics, 74, 193–200.
Seddon, K. R. (1997). Ionic liquids for clean technology. Journal of Chemical Technology and Biotechnology, 68, 351-356.
Smiglak, M., Pringle, J. M., Lu, X., Han, L., Zhang, S., Gao, H. (2014). Ionic liquids for energy, materials, and medicine. RSC Advances, 50, 9228-9250.
Tu, C. H., Ku, ,. H., Wang, W. F., & Chou, Y. T. (2001). Volumetric and viscometric properties of methanol, ethanol, propan-2-ol, and 2-methylpropan-2-ol with a synthetic C6+ mixture from 298.15 K to 318.15 K. Journal of Chemical Engineering Data, 46 (2), 317-321.
Venkatramana, L., Bharath, K. C., & Ramesh, L. G. (2016). Synthesis, spectroscopic characterization and acoustic, volumetric, transport and thermal properties of hydroxyl ammonium based ionic liquids. Journal of Chemical Thermodynamics, 92, 175-181.
Wasserscheid, P., & Welton, T. (2002). Ionic Liquids in Synthesis. Weinheim: WILEY-VCH.
Welton, T. (1999). Room-temperature ionic liquids. solvents for synthesis and catalysis. Chemical Reviews, 99(8), 2071-2083.
Werner, S., Haumann, M., & Wasserscheid, P. (2010). Ionic liquids in chemical engineering. The Annual Review of Chemical and Biomolecular Engineering, 1, 203-230.
Wilkes, J. S. (2002). A Short History of ionic liquids from molten salts to neoteric. Green Chemistry, 4(2), 73-80.
Yaws, C. Y. (1999). Chemical properties handbook. New york: McGraw-Hill.
Zhang, D. H. T., C., Hantao, L. W., & Anderson, J. L. (2014). onic liquid in analytical chemistry : fundamentals, advances, and perspectives. Analytical Chemistry, 86(1), 262-285.
Zhang, L., Lu, X., Ye, D., Guo, Y., & Fang, W. (2016). Density and viscosity for binary mixtures of the ionic liquid 2,2-diethyl-1,1,3,3-tetramethylguanidium ethyl sulfate with water, methanol, or ethanol. Journal of Chemical & engineering data, 61(3), 1023-1031.
Zhang, S., Sun, N., He, X., Lu, X., & Zhang, X. (2006). Physical properties of ionic liquids: Database and evaluation. Journal of Physical and Chemical Reference Data, 35, 1475-1517.

QR CODE