簡易檢索 / 詳目顯示

研究生: Jeffrey Gunawan
Jeffrey Gunawan
論文名稱: 應用於假日負載預測之基於動態時間校正演算法與長短期記憶模型之混合式短期電力負載預測框架
Hybrid Short-Term Forecasting Framework for Holiday Load Forecasting based on Dynamic Time Warping and LSTM
指導教授: 黃琴雅
Chin-Ya Huang
口試委員: 方文賢
Wen-Hsien Fang
鄭瑞光
Ray-Guang Cheng
唐文祥
Wen-Shiang Tang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 73
中文關鍵詞: 假日負荷預測短期負荷預測 (STLF)動態時間規整 (DTW)長期短期記憶(LSTM)
外文關鍵詞: Holiday load forecasting, Short-term load forecasting (STLF), Dynamic time warping (DTW), Long-short term memory (LSTM)
相關次數: 點閱:221下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 準確的負荷預測系統對於電力公司來說是有效管理系統運行和調度所必需的。然而,面對公眾假期,由於人類行為的急劇變化,負荷消耗模式的行為無法預測。因此,假期負荷預測是一個具有挑戰性的問題,因為假期期間的預測準確性與一般的工作日/週末相比有所下降。在本文中,我們提出了DynaLSTM,這是一種混合型短期假期預測框架,旨在預測即將到來的公共假期之前的最近一個工作日的公共假期的負荷消耗。 DynaLSTM由動態時間規整(DTW)和長期短期記憶(LSTM)組成。 DTW用於預測最近工作日和任何先前的補償性假期(如果有)的負荷消耗,而LSTM用於預測目標公共假日的高度不可預測的負荷消耗。此外,我們還提出了一種數據選擇程序(DSP),以系統地選擇訓練數據來訓練LSTM模型。當前結果表明,與其他方法相比,我們提出的框架在不同長度的假期中表現更好。


    An accurate load forecasting system is necessary for a power company to efficiently manage system operation and scheduling. In the face of a public holiday, however, the load consumption pattern behaves unpredictably as a result of the drastic change in human behavior. Thus, holiday load forecasting is a challenging issue because the forecasting accuracy in holiday period fell compared to general weekdays/weekends. In this thesis, we propose DynaLSTM, which is a hybrid short-term holiday forecasting framework designed to predict the load consumption of a public holiday on the nearest workday prior to the incoming public holiday. DynaLSTM consists of dynamic time warping (DTW) and long-short term memory (LSTM). DTW is used to predict the load consumption of the nearest workday and any preceding compensatory holiday(s), if any, while LSTM is used to predict the highly unpredictable load consumption of the target public holiday. Additionally, we also propose a data selection procedure (DSP) to systematically select training data to train the LSTM model with. Present results demonstrate that our proposed framework performs better across holidays of different length compared to other methods.

    X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 Holiday Load Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Short-Term Load Forecasting . . . . . . . . . . . . . . . . . . . . . . 9 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 The Hybrid Short-Term Holiday Load Forecasting Framework (DynaLSTM) 15 4.1 Dynamic time warping for the Nearest workday and Compensatory holiday load prediction (DynaNC) . . . . . . . . . . . . . . . . . . . . 15 4.2 Data Selection Procedure (DSP) . . . . . . . . . . . . . . . . . . . . . 23 4.3 LSTM for Holiday (LSTMH) . . . . . . . . . . . . . . . . . . . . . . 26 5 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.1 Prediction Error on Holidays with Compensatory Holiday(s) . . . . . 35 6.2 Prediction Error on Holidays with no Compensatory Holiday . . . . . 40 6.3 Prediction Error on Holidays with Extended Period . . . . . . . . . . 42 6.4 E ect of Hybrid Approach on Load Prediction . . . . . . . . . . . . . 46 6.5 E ect of Quarter-hourly Data on Load Prediction . . . . . . . . . . . 49 6.6 E ect of Temperature with Noise on Load Prediction . . . . . . . . . 52 6.7 E ect of Omitting Temperature Information on Load Prediction . . . 53 6.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 vii

    [1] M. A. Ortega-Vazquez and D. S. Kirschen, \Economic impact assessment of load fore-
    cast errors considering the cost of interruptions," in 2006 IEEE Power Engineering
    Society General Meeting, pp. 1{8, 2006.
    [2] B. F. Hobbs, S. Jitprapaikulsarn, S. Konda, V. Chankong, K. A. Loparo, and D. J.
    Maratukulam, \Analysis of the value for unit commitment of improved load fore-
    casts," IEEE Trans. Power Syst., vol. 14, no. 4, pp. 1342{1348, 1999.
    [3] A. Almalaq and J. J. Zhang, Deep learning application: load forecasting in big data of
    smart grids, vol. 865, pp. 103{128. Cham: Springer International Publishing, 2020.
    [4] J. Zheng, C. Xu, Z. Zhang, and X. Li, \Electric load forecasting in smart grids using
    long-short-term-memory based recurrent neural network," in 2017 51st Annu. Conf.
    Information Sciences and Systems, pp. 1{6, 2017.
    [5] P. Zeng, C. Sheng, and M. Jin, \A learning framework based on weighted knowledge
    transfer for holiday load forecasting," J. Mod. Power Syst. Clean Energy, vol. 7,
    pp. 1{21, Mar 2019.
    [6] G. Forestier, F. Petitjean, H. A. Dau, G. I. Webb, and E. Keogh, \Generating syn-
    thetic time series to augment sparse datasets," in 2017 IEEE International Conference
    on Data Mining (ICDM), pp. 865{870, 2017.
    [7] Y.-M. Wi, S.-K. Joo, and K.-B. Song, \Holiday load forecasting using fuzzy polyno-
    mial regression with weather feature selection and adjustment," IEEE Trans. Power
    Syst., vol. 27, pp. 596{603, May 2012.
    [8] Q. Ding, H. Zhang, T. Huang, and J. Zhang, \A holiday short term load forecasting
    considering weather information," in 2005 International Power Engineering Confer-
    ence, pp. 1{61, 2005.
    [9] Y. Cai, Q. Xie, C. Wang, and F. Lu, \Short-term load forecasting for city holidays
    based on genetic support vector machines," in 2011 International Conference on
    Electrical and Control Engineering, pp. 3144{3147, 2011.
    [10] R. S. S. Fernandes, Y. K. Bichpuriya, M. S. S. Rao, and S. A. Soman, \Day ahead load
    forecasting models for holidays in indian context," in 2011 International Conference
    on Power and Energy Systems, pp. 1{5, 2011.
    [11] F. Ziel, \Modeling public holidays in load forecasting: a german case study," J. Mod.
    Power Syst. Clean Energy, vol. 6, pp. 191{207, Mar 2018.
    [12] S. Fallah, M. Ganjkhani, S. Shamshirband, and K.-w. Chau, \Computational intelli-
    gence on short-term load forecasting: a methodological overview," Energies, vol. 12,
    pp. 1{21, Jan 2019.
    [13] J. Y. Hong, S. H. Park, and J.-G. Baek, \Segmented dynamic time warping based sig-
    nal pattern classi cation," in 2019 IEEE International Conference on Computational
    Science and Engineering (CSE) and IEEE International Conference on Embedded
    and Ubiquitous Computing (EUC), pp. 263{265, 2019.
    [14] M. Brown and L. Rabiner, \Dynamic time warping for isolated word recognition
    based on ordered graph searching techniques," in ICASSP '82. IEEE International
    Conference on Acoustics, Speech, and Signal Processing, vol. 7, pp. 1255{1258, 1982.
    [15] T. Teeraratkul, D. ONeill, and S. Lall, \Shape-based approach to household elec-
    tric load curve clustering and prediction," IEEE Trans. Smart Grid, vol. 9, no. 5,
    pp. 5196{5206, 2018.
    [16] A. Ahmad, N. Javaid, A. Mateen, M. Awais, and Z. A. Khan, \Short-term load
    forecasting in smart grids: an intelligent modular approach," Energies, vol. 12, pp. 1{
    21, Jan 2019.
    [17] G. Dudek, \Short-term load cross-forecasting using pattern-based neural models," in
    2015 16th International Scienti c Conference on Electric Power Engineering (EPE),
    pp. 179{183, 2015.
    [18] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He, \Short-term load forecasting
    with deep residual networks," IEEE Trans. Smart Grid, vol. 10, no. 4, pp. 3943{3952,
    2019.
    [19] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, \Short-term residential
    load forecasting based on lstm recurrent neural network," IEEE Trans. Smart Grid,
    vol. 10, no. 1, pp. 841{851, 2019.
    [20] M. Tan, S. Yuan, S. Li, Y. Su, H. Li, and F. He, \Ultra-short-term industrial power
    demand forecasting using lstm based hybrid ensemble learning," IEEE Trans. Power
    Syst., vol. 35, no. 4, pp. 2937{2948, 2020.
    [21] M. S. Hossain and H. Mahmood, \Short-term load forecasting using an lstm neural
    network," in 2020 IEEE Power and Energy Conference at Illinois (PECI), pp. 1{6,
    2020.
    [22] L. Tang, Y. Yi, and Y. Peng, \An ensemble deep learning model for short-term
    load forecasting based on arima and lstm," in 2019 IEEE International Conference
    on Communications, Control, and Computing Technologies for Smart Grids (Smart-
    GridComm), pp. 1{6, 2019.
    [23] R. Asadi and A. C. Regan, \A spatio-temporal decomposition based deep neural
    network for time series forecasting," Applied Soft Computing, vol. 87, pp. 1{13, Feb
    2020.
    [24] Z. Yu, Z. Niu, W. Tang, and Q.Wu, \Deep learning for daily peak load forecastinga
    novel gated recurrent neural network combining dynamic time warping," IEEE Ac-
    cess, vol. 7, pp. 17184{17194, Jan 2019.
    [25] S. Theodoridis and K. Koutroumbas, Pattern recognition, pp. 324{325. San Diego,
    CA, USA: Academic Press, 2009.
    [26] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
    \Dropout: a simple way to prevent neural networks from over tting," J. Mach. Learn.
    Res., vol. 15, pp. 1929{1958, Jan 2014.
    [27] F. Ziel and R. Weron, \Day-ahead electricity price forecasting with high-dimensional
    structures: univariate vs. multivariate modeling frameworks," Energy Economics,
    vol. 70, pp. 396{420, Feb 2018.
    [28] F. Chollet et al., \Keras." https://keras.io, 2015.
    [29] S. Liu, H. Ji, and M. C. Wang, \Nonpooling convolutional neural network forecasting
    for seasonal time series with trends," IEEE Trans. Neural Netw. Learn. Syst., vol. 31,
    no. 8, pp. 2879{2888, 2020.
    [30] S. A. Soliman and A. M. Alkandari, Electrical load forecasting: modeling and model
    construction, p. 86. Burlington, MA, USA: Butterworth-Heinemann, 2010.
    [31] A. RochaReis and A. AlvesdaSilva, \Feature extraction via multiresolution analysis
    for short-term load forecasting," IEEE Trans. Power Syst., vol. 20, pp. 189{198, Feb
    2005.

    無法下載圖示 全文公開日期 2026/01/21 (校內網路)
    全文公開日期 2026/01/21 (校外網路)
    全文公開日期 2026/01/21 (國家圖書館:臺灣博碩士論文系統)
    QR CODE