簡易檢索 / 詳目顯示

研究生: 翁玉鑽
Artik - Elisa Angkawijaya
論文名稱: 金屬離子、酚酸及甘氨酸寡肽錯合物之形成以及配体結構對溶液平衡影響之研究
FIRST ROW TRANSITION METAL IONS, PHENOLIC ACIDS AND GLYCINE OLIGOPEPTIDES: STUDY OF COMPLEX FORMATION AND LIGAND STRUCTURAL INFLUENCE ON ITS SOLUTION EQUILIBRIA
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: Truong Chi Thanh
Truong Chi Thanh
Suryadi Ismadji
Suryadi Ismadji
Ahmed Fazary
Ahmed Fazary
劉志成
Liu Jhy-Chern
李明哲
Lee Ming-Jer
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 115
中文關鍵詞: metal ionsphenolic acidamino acidHYPERQUADsolution equilibria
外文關鍵詞: metal ions, phenolic acid, amino acid, HYPERQUAD, solution equilibria
相關次數: 點閱:205下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討金屬離子(Fe3+, Cr3+, Cu2+, Ni2+, Co2+)與配体(甘氨酸,甘氨酸-甘氨酸,甘氨酸-甘氨酸-甘氨酸,L-纈氨酸,阿魏酸及沒食子酸)間之平衡常數。 利用酸鹼值-電位滴定在298.15K及0.15 mol‧dm-3 of NaNO3離子強度下探討此配体之質子化常數以及二成份與三成份金屬-配体錯合物之形成。 根據電位滴定數據,利用軟体(HYPERQUAD 2008)得到每一系統之錯合模式。Gibbs反應自由能(rG)以及Gaussian模擬程式被用來証實配体提供之結合位置以及預測由一金屬離子、一配体所形成錯合物之結構。
    本研究討論每一系統所發生之現象。對金屬離子而言,穩定常數以下列趨勢降低: Fe3+ > Cr3+ > Cu2+ > Ni2+ > Co2+;此趨勢受電價影響且遵循Irving-William 二價金屬璃子定律。對配体而言,結構体積較小之配体 (甘氨酸)及較負電荷之配体(沒食子酸)所形成之錯合物較穩定。而對甘氨酸寡肽來說,肽骨幹上之氮當其以去質子態存在時可加強錯合物 之穩定性。在三成份系統中,含沒食子酸所形成錯合物之穩定性大於含 阿魏酸之穩定性。本研究並利用∆logK 及 logX 定量化比較混合配体錯合物與二成份錯合物之穩定性。.


    The equilibrium constants for metal ions (Fe3+, Cr3+, Cu2+, Ni2+, Co2+) with ligands (glycine, glycylglycine, glycylglycyglycine, L-norvaline, ferulic acid and gallic acid) were reported in this work. The protonation constants of these ligands along with the formation of metal-ligand complex in binary and ternary systems were studied by using pH-potentiometric titration in aqueous solution at 298.15K and an ionic strength 0.15 mol‧dm-3 of NaNO3. The complexation model for each system was refined by software program “HYPERQUAD 2008” from potentiometric titration data. Moreover, Gibbs free energy of reaction (rG) that obtained from Gaussian modeling program were used to verify the contributing binding site of the ligands and to predict the structure of the one metal and one ligand complexes.
    The phenomenon that occurred in each system was discussed. In terms of metal ion, the trend of stability constant decreases in the following order Fe3+ > Cr3+ > Cu2+ > Ni2+ > Co2+, which is affected by its electrical charge and following Irving-William rule for divalent metal ion. In terms of the ligand, the system with less bulky structure (glycine) and more negatively charged ligand (gallic acid) formed more stable complex than the other ligands. While for system with gycine oligopeptide, nitrogen in peptide backbone enhanced the complex stability while it existed in deprotonated form. In ternary system that contains gallic acid, the stability constant of the complexes are more stable than the systems with ferulic acid. The stability of mixed ligand complexes was quantitatively compared with corresponding binary complexes in term of ∆logK and logX.

    Recommendation Letterii Qualification Letteriii 摘要iv Abstractv Acknowledgementvi Table Of Contentvii List Of Tableix List Of Figurexi Chapter 1. Introduction1 1.1.Background1 1.2.Objectives3 Chapter 2. Literature Review4 2.1.Metal4 2.1.1.Iron5 2.1.2.Chromium6 2.1.3.Copper7 2.1.4.Nickel9 2.1.5.Cobalt10 2.2.Ligand10 2.2.1.Phenolic Acids11 2.2.2.Amino Acids And Peptides15 2.3.Complexation19 2.3.1.Amino Acid And Peptide Complexes22 2.3.2.Phenolic Acid Complexes23 2.3.3.Biologically Active Metal Complexes25 Chapter 3. Experimental28 3.1.Materials28 3.2.Experimental Procedure29 3.2.1.Instrumentation29 3.2.2.pH-Potentiometric Titration30 3.2.3.pH-Potentiometric Data Analysis31 3.2.4.Gaussian Structure Prediction33 Chapter 4. Result and Discussion35 4.1.Protonation Constants35 4.2.Complex Formation Constant In Binary System41 4.2.1.Influence Of Peptide Amide Nitrogen On Complex Stability53 4.3.Gaussian Structure Prediction56 4.4.Complex Formation Constant In Ternary System61 Chapter 579 References81 Appendix92

    1.Nelson, L.S., Lewin, N.A., Howland, M.A., Hoffman, R.S., Goldfrank, L.R., Flomenbaum, N.E. Goldfrank's toxicological emergencies. 8th ed. New York: Mc Graw-Hill Companies, Inc.; 2006.
    2.Flora, S.J.S., Pachauri, V. Chelation in metal intoxication. Int. J. Environ. Res Public Health. 2010; 7: 2745-2788.
    3.Rogan, W.J., Dietrich, K.N., Ware, J.H., et al. The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N. Eng. J. Med. 2001; 344(19): 1421-1426.
    4.Itamar, B., Warren, J.L., William, F.R., David, H.R. Environmental inorganic chemistry. New York: Pergamon Press; 1988.
    5.Andersen, O. Principles and recent developments in chelation treatment of metal intoxication. Chem. Rev. 1999; 99: 2683-2710.
    6.Mishra, D., Flora, S.J.S. Quercetin administration during chelation therapy protects arsenic induced oxidative stress in mouse. Biol. Trace Elem. Res. 2008; 122: 137-142.
    7.Pande, M., Flora, S.J.S. Lead induced oxidative damage and its response to combined administration of a-Lipoic acid and succimers in rats. Toxicology. 2002; 117: 187-196.
    8.Robbins, R.J. Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem. 2003; 51: 2866-2887.
    9.Srinivasan, M., Sudheer, A.R., Menon, V.P. Ferulic Acid : therapeutic potential through its antioxidant property. J. Clin. Biochem Nutr. 2006; 40: 92-100.
    10.Simonyan, A.H. Activity of cinnamic acid derivatives and new methods for their synthesis (review). Pharm. Chem. J. 1993; 27: 92-100.
    11.Sigel, H., Martin, R.B. Coordinating properties of the amide bond. Stability and structure of metal ion complexes of peptides and related ligands. Chem. Rev. 1981; 82: 385-426.
    12.Ge, X., Wexler, A.S., Clegg, S.L. Atmosphericamines – Part II. Thermodynamic properties and gas/ particle partitioning. Atmos. Environ. 2011; 45(3): 561-577.
    13.Martin, R.B., Chamberlin, M., Edsall, J.T. The association of nickel(II) ion with peptides. J. Am. Chem. Soc. 1960; 82: 495-498.
    14.Brunetti, A.P., Lim, M.C., Nancollas, G.H. Thermodynamics of ion association. XVII. Copper complexes of diglycine and triglycine. J. Am. Chem. Soc. 1968; 90(19): 5120-5126.
    15.Lim, M.C., Nanchollas, G.H. Thermodynamics of ions association. XXII. Nickel complexes of glycine, diglycine, triglycine and glycyl-g-aminobutyric acid. Inorg. Chem. 1971; 10(9): 1957-1961.
    16.Kim, M.K., Martell, A.E. Copper(II) complexes of triglycine and tetraglycine. J. Am. Chem. Soc. 1966; 88(5): 914-918.
    17.Prashanthi, Y., Kiranmai, K., Ira, K, S.k., Chityala, V.k., Shivaraj. Spectroscopic characterization and biological activity of mixed ligand complexes of Ni(II) with 1,10-phenanthroline and heterocyclic schiff bases. Bioinorg. Chem. App. 2012; 2012.
    18.Mohamed, G.G., Omar, M.M., Ibrahim, A.A. Biological activity studies on metal complexes of novel tridentate Schiff base ligand. Spectroscopic and thermal characterization. Eur. J. Med. Chem. 2009; 44(12): 4801-4812.
    19.Neelakantan, M.A., Esakkiammal, M., Mariappan, S.S., Dharmaraja, J., Jeyakumar, T. Synthesis, characterization and biocidal activities of some schiff base metal complexes. Indian J. Pharm. Sci. 2010; 72(2): 216-222.
    20.Alderighi, L., Gans, P., Ienco, A., Peters, D., Sabatini, A., Vacca, A. Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999; 184: 311-318.
    21.Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al. Gaussian 09, revision A.1. In. Gaussian 09 ed. Wallingford CT: Gaussian, Inc.; 2009.
    22.Bukhari, I.H., Hassan, M.N., Haleem, A., Bhatti, M.M. Role of metals (cadmium and lead) in patients of hypertension and their relationship with ischemic heart disease. J. Agri. Biol. Sci. 2005; 1(2): 190-194.
    23.Trumbo, P., Yates, A.A., Schlicker, S., Poos, M. Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 2001; 101(3): 294-301.
    24.Morgan, J.W., Anders, E. Chemical composition of earth, venus, and mercury. Proc. Natl. Acad. Sci. USA. 1980; 77(12): 6973-6977.
    25.Muir, A., Hopfer, U. Regional specificity of iron uptake by intestina brush-broader membranes from normal and iron deficient mice. Gastrointest. Liver Pat. 1985; 11: 6376-6379.
    26.Bruening, George, E.Conn, E., Doi, R.H., Stumpf, P.K. Outlines of Biochemistry. New York: John Wiley and Sons, Inc.; 1978.
    27.Faa, G., Crisponi, G. Iron chelating agents in clinical practice. Coord. Chem. Rev. 1999; 184: 291-310.
    28.Papanikolaou, G., Pantopoulos, K. Iron metabolism and toxicity. Toxicol. App. Pharm. 2005; 202: 199-211.
    29.Irwin, R.J. Environmental contaminants encyclopedia chromium III (trivalent chromium) entry. Colorado; 1997.
    30.Grevat, P.C. Toxicological review of trivalent chromium. Washington,DC: U.S. Environmental Protection Agency; 1998.
    31.Khade, B.C., Deore, P.N., Arbad, B.R. Composition andstability of chromium metal complexes with drug salbutamol and amino acid. Int. J. Pharm. Sci. 2011; 2(1): 73-86.
    32.Rong, M., Motekaitis, R.J., Martell, A.E. Synthesis of N-hydroxybenzylethylenediamine-ZV,N’,N’-triacetic acid and the stabilities of its complexes with divalent and trivalent metal ions Inorg. Chim. Acta. 1995; 233: 137-143.
    33.Cotton, F.A., Wilkinson, G. Advanced organic chemistry. A comprehensive text. 4th ed. New York: John Wiley and Sons, Inc; 1980.
    34.Toxological review of trivalent chromium. In: Agency, U.S.E.P., editor. Washington, DC; 1998.
    35.Reeves, P.G., DeMars, L.C.S. Copper Deficiency Reduces Iron Absorption and Biological Half-Life in Male Rats. J. Nutr. 2004; 134(8): 1953-1957.
    36.A.T.S.D.R. Toxicological profile for copper. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service; 2004.
    37.Kohlmeier, M. Nutrient metabolism. London: Elsevier; 2003.
    38.Bremmer, I. Manifestation of copper excess. Am. J. Clin. Nutrit. 1998; 67: 1069S-1073S.
    39.Irwin, R.J. Environmental contaminants encyclopedia nickel entry. In: National Park Service Water Resources Divisions, W.O.B., editor. Colorado; 1997.
    40.A.T.S.D.R. Toxicological profile for nickel. Atlanta, G.A.: U.S. Department of Health and Human Services, Public Health Service; 2005.
    41.Duda-Chodak, A., Blaszczyk, U. The impact of nickel on human health. J. Elem. 2008; 13(4): 685-696.
    42.Verougstraete, V., Mallants, A., Buchet, J.-P., Swennen, B., Lison, D. Lung function changes in workers exposed to cobalt compounds. Am. J. Resp. Crit. Care Med. 2004; 170: 162-166.
    43.A.T.S.D.R. Toxicological profile for cobalt. Atlanta, Georgia: U.S. Department of Health and Human Services, Public Health Service; 2004.
    44.Mosconi, G., Bacis, M., Leghissa, P., Sala, C. Occupational exposure to metallic cobalt. In: Cheremisinoff, P.N., Cheremisinoff, N.P., editors. Advances in environmental control technology: health and toxicology: Elsevier; 1997.
    45.Cobalt in the environment. In: Cobalt Exposure and Heart Disease; 2006.
    46.Gispert, J.R. Coordination chemistry. Weinheim: WILEY-VCH; 2008.
    47.Orgel, L.E. An introduction to transition-metal chemistry ligand-field theory. Cambridge; 1972.
    48.Earnshaw, A., Greenwood, N. Chemistry of the elements. 2nd ed: Elsevier Science & Technology Books; 1997.
    49.Waterman, P.G., Mole, S. Analysis of phenolic plant metabolites. Oxford, UK: Blackwell Cientific Publications; 1994.
    50.Maestri, D.M., Nepote, V., Lamarque, A.L., Zygadlo, J.A. Natural product as antioxidants. In: Imperato, F., editor. Phytochemistry: Adavances in Research. India: Research Signpost; 2006.
    51.Brown, J.A., Khodr, H., Hider, R.C., Rice-Evans, C. Structural dependence of flavonoid interactions with Cu2 + ions: implications for their antioxidant properties. Biochem. J. 1998; 330: 1173-1178.
    52.Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I., Bahorun, T. Phenolics as potential anti-oxidant therapeutic agents: mechanism and actions. Mutat. Res. 2005; 579: 200-213.
    53.Roy, M., Chakrabarty, S., Sinha, D., Bhattacharya, R.K., Siddiqi, M. Anticlastogenic, antigenotoxic and apoptotic activity of epigallocatechin gallate: a green tea polyphenol. Mutat. Res. 2003; 523-524: 33-41.
    54.Vermeulen, K., Van-Bockstaele, D.R., Berneman, Z.N. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 2003; 36(3): 131-149.
    55.Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y., Yabu, Y. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun. 1994; 204(2): 898-904.
    56.Newmark, H.L. Plant phenolics as inhibitors of mutational and precarcinogenic events. Can. J. Physiol. Pharmacol. 1987; 65(3): 461-366.
    57.Fujimaki, M., Tsugita, T., Kurata, T. Fractionation and identification of volatile acids and phenols in the steam distillate of rice bran. Agric. Biol. Chem. 1977; 41: 1721-1725.
    58.Nakagawa, H., Takaishi, Y., Tanaka, N., Tsuchiya, K., Shibata, H., Higuti, T. Chemical constituents from the peels of citrus sudachi. J. Nat. Prod. 2006; 69(8): 1177-1179.
    59.Chen, F.-C., Peng, C.-F., Tsai, I.-L., Chen, I.-S. Antitubercular constituents from the stem wood of cinnamomum kotoense. J. Nat. Prod. 2005; 68(9 ): 1318 - 1323
    60.Ding, H., Lamb, R.J., Ames, N. Inducible production of phenolic acids in wheat and antibiotic resistance to sitodiplosis mosellana. J. Chem. Ecol. 2000; 26(4): 969-986.
    61.Ohashi, H., Yamamoto, E., Lewis, N.G., Towers, G.H.N. 5-Hydroxyferulic acid in zea mays and hordeum vugare cell walls. Phytochemistry. 1987; 26(7): 1915-1916.
    62.Li, F., Awale, S., Tezuka, Y., Kadota, S., Esumi, H. Study on the constituents of mexican propolis and their cytotoxic activity against PANC-1 human pancreatic cancer cells. J. Nat. Prod. 2010; 73(4): 623 - 627
    63.Graft, E. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 2000; 28: 1249-1256.
    64.Adam, A., Crespy, V., Levrat-Verny, M.A., Leenhardt, F., Leuillet, M., Demigne, C., Remesy, C. The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. J. Nutr. 2002; 132: 1962–1968.
    65.Teuchy, H., Van-Sumere, C.F. The metabolism of (1- 14 C) phenylalanine, (3- 14 C) cinnamic acid and (2- 14 C) ferulic acid in the rat. Arch. Int. Physiol. Biochim. 1971; 79(3): 589-618.
    66.Zhao, Z., Moghadasian, M.H. Chemistry, natural source, diietary intake and pharmacokinetics properties of ferulic acid: a review. Food Chem. 2008; 109: 691-702.
    67.Ou, L., Kong, L.Y., Zhang, X.M., Niwa, M. Oxidation of ferulic acid by momordica charantia peroxidase and related anti-inflammation activity changes. Biol. Pharm. Bull. 2003; 26: 1511-1516.
    68.Wang, B., Ouyang, J., Liu, Y., Yang, J., Wei, L., Li, K. Sodium ferulate inhibits atherosclerogenesis in hyperlipidemia rabbits. J. Cardiovasc. Pharm. 2004; 43: 549-554.
    69.Wang, B.H., Ou-Yang, J.P. Pharmacological actions of sodium ferulate in cardiovascular system. Cardiovasc. Drug Rev. 2005; 23: 161–172.
    70.Huang, M.T., Smart, R.C., Wong, C.Q., Conney, A.H. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1998; 48(21): 5941-5946.
    71.Yogeeta, S.K., Hanumantra, R.B., Gnanapragasam, A., Senthilkumar, S., Subhashini, R., Devaki, T. Attenuation of abnormalities in the lipid metabolism during experimental myocardial infarction induced by isoproterenol in rats: beneficial effect of ferulic acid and ascorbic acid. Basic Clin. Pharmacol. Toxicol. 2006; 98(5): 467-472.
    72.Sri-Balasubashini, M., Rukkumani, R., Menon, V.P. Protective effects of ferulic acid on hyperlipidemic diabetic rats. Acta Diabetol. 2003; 40(3): 118-122.
    73.Zhou, B., Jia, Z.-S., Chen, Z.-H., Yang, L., Wu, L.-M., Liu, Z.-L. Synergistic antioxidant effect of green tea polyphenols with α-tocopherol on free radical initiated peroxidation of linoleic acid in micelles. J. Chem. Soc. Perkin Trans. 2: Phys. Org. Chem. 2000; 2000(4): 785-792.
    74.Zhang, H.-M., Wang, C.-F., Liu, Z.-M., et al. Antioxidant phenolic compounds from Pu-erh tea. Molecules. 2012; 17(12): 14037 - 14045.
    75.Naz, S., Siddiqi, R., Saeed, S.M.G., Sayeed, S.A. Antioxidant activity directed isolations from Punica granatum. Pakistan J. Sci. Ind. Res. 2012; 55(1): 14-20.
    76.Mertz, C., Brat, P., Cheynier, V., Guenata, Z. Analysis of phenolic compounds in two blackberry species (Rubus glaucus and Rubus adenotrichus) by high-performance liquid chromatography with diode array detection and electrospray ion trap mass spectrometry. J. Agric. Food Chem. 2007; 55(21): 8616-8624.
    77.Fazary, A.E., Taha, M., Ju, Y.H. Iron Complexation Studies of Gallic Acid. J. Chem. Eng. Data. 2009; 54: 35-42.
    78.Inoue, M., Suzuki, R., Sakaguchi, N., Li, Z., Takeda, T. Selective induction of cell death in cancer cells by gallic acid. Biol. Pharm. Bull. 1995; 18(1): 1526-1530.
    79.Huang, M.T., Chang, R.L., Wood, A.W., Newmark, H.L., Sayer, J.M., Yagi, H., Jerina, D.M., Conney, A.H. Inhibition of the mutagenicity of bay-region diol-epoxides of polycyclic aromatic hydrocarbons by tannic acid, hydroxylated anthraquinones and hydroxylated cinnamic acid derivatives. Carcinogenesis. 1985; 6(2): 237-42.
    80.Harvey Wickes Felter, M.D., John Uri Lloyd, P.M., Ph. D. Acidum Gallicum (U. S. P.)—Gallic Acid. 1898.
    81.Kim, S.H., Jun, C.D., Suk, K., et al. Gallicacid inhibits histamine release and pro-inflammatory cytokine production in mast cells. Oxford J. Toxicol. Sci. 2006; 91(1): 123–131.
    82.Aposhian, H.V., Maiorinoa, R.M., Gonzalez-Ramirez, D., Zuniga-Charles, M., Xua, Z., Hurlbutd, K.M., Junco-Munoze, P., Dartd, R.C., Aposhiana, M.M. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicol. 1995; 97: 23-38.
    83.Yamauchi, O., Odani, A. Stability constant of metal complexes of amino acids with charged side chains - part I: positively charged side chains. Pure & Appl. Chem. 1996; 68(2): 469-496.
    84.Swain, T. Secondary compounds as protective agents. Plant Physiol. 1977; 28: 479-501.
    85.Kiss, T., Sovago, I., Gergely, A. Critical survey of stability constants of complexes of glycine. Pure & Appl. Chem. 1991; 63(4): 597-638.
    86.Sovago, I., Kiss, T., Gergely, A. Critical survey of the stability constant of complexes of aliphatic amino acids. Pure & Appl. Chem. 1993; 65: 1029-1080.
    87.May, M.E., Hill, J.O. Energy content of diets of variable amino acid composition. Am. J. Clin. Nutr. 1990; 52(5): 770-6.
    88.Varoqui, H., Zhu, H., Yao, D., Ming, H., Erickson, J.D. Cloning and functional identification of a neuronal Glutamine Transporter. J. Biol. Chem. 2000; 275(6): 4049-4054.
    89.Lopez-Corcuera, B., Geerlings, A., Aragon, C. Glycine neurotransmitter transporters: an update. Mol. Membr. Biol. 2001; 18(1): 13-20.
    90.Javitt, D.C. Glycine transport inhibitors for the treatment of schizophrenia: symptom and disease modification. Curr. Opin. Drug Discov. Devel. 2009; 12(4): 468-78.
    91.Heresco-Levy, U., Javitt, D.C. Comparative effects of glycine and d-cycloserine on persistent negative symptoms in schizophrenia: a retrospective analysis. Schizophrenia Res. 2004; 66(2–3): 89-96.
    92.Soini, J., Falschlehner, C., Liedert, C., Bernhardt, J., Vuoristo, J., Neubauer, P. Norvaline is accumulated after a down-shift of oxygen in Escherichia coli W3110. Microb. Cell Fact. 2008; 7(30).
    93.Tewari, B.B. Studies on biologically important copper(II) / manganese(II) / uranyl(II) – norvaline binary complexes. Maced. J. Chem. Chem. En. 2008; 27(2): 157-162.
    94.Kisumi, M., Sugiura, M., Takagi, T., Chibata, I. Norvaline accumulation by regulatory mutants of serratia marcescens. J. Antibiot. 1976: 111-117.
    95.Chang, C.-I., Liao, J.C., Kuo, L. Arginase modulates nitric oxide production in activated macrophages. Am. J. Physiol. Heart. Circ. Physiol. 1998; 274: H342-348.
    96.Pokrovskiy, M.V., Korokin, M.V., Tsepeleva, S.A., et al. Arginase inhibitor in the pharmacological correction of endothelial dysfunction. Int. J. Hypertens. 2011; 2011.
    97.Huynh, N.N., Harris, E.E., Chin-Dusting, J.F.P., Andrews, K.L. The vascular effects of different arginase inhibitors in rat isolated aorta and mesenteric arteries. Br. J. Pharmacol. 2009; 156(1): 84-93.
    98.Ming, X.F., Rajapakse, A.G., Carvas, J.M., Ruffieux, J., Yang, Z. Inhibition of S6K1 accounts partially for the anti-inflammatory effects of the arginase inhibitor L-norvaline. BMC Cardiovasc. Disord. 2009. 2009; 9:12.
    99.Nandi, P., Sen, G.P. An antifungal substance from a strain of B. subtilis. Nature. 1953; 172: 871-872.
    100.Sit, C.S., Vederas, J.C. Approaches to the discovery of the new antibacterial agents based on bacteriocins. Biochem. Cell Biol. 2008; 86: 116-123.
    101.Andruszkiewicz, R., Chmara, H., Milewski, S., Zieniawa, T., Borowski, E. Antimicrobial properties of N3-(iodoacetyl)-L-2,3-diaminopropanoic acid-peptide conjugates. J. Med. Chem. 1990; 33(10): 2755-2759.
    102.Sarpotdar, P.P., Gaskill, J.L., Giannini, R.P., Daniels, C.R., inventors; L-Amino acids as transdermal penetratin enhancers. United States. 1988.
    103.Tagashira, M., Nozato, N., Isonishi, S., Okamoto, A., Ochiai, K., Ohtake, Y. 5-Hydroxy-4-oxo-L-norvaline depletes intracellular glutathione: a new modulator of drug resistance. Biosci. Bitechnol. Biochem. 1999; 63(11): 1953-1958.
    104.Jiang, J.D., Zhang, H., Li, J.N., Roboz, J., Qiao, W.B., Holland, J.F., Bekesi, G. High anticancer efficacy of L-proline-m-bis (2-chloroethyl) amino-L-phenylalanyl-L-norvaline ethyl ester hydrochloride (MF13) in vivo. Anticancer Res. 2001; 21(3B): 1681-1689.
    105.Cooney, D.A., Jayaram, H.N., Milman, H.A., Homan, E.R., Pittillo, R., Geran, R.I., Ryan, J., Rosenbluth, R.J. DON, CONV AND DONV-III. Pharmacologic and toxicologic studies Biochem. Pharm. 1975; 25: 1859-1870.
    106.Bottei, R.S., Schneggenburger, R.G. Thermogravimetric study of some divalent transition metal chelates of several amino acids. J. Therm. Anal. 1970; 2: 11-23.
    107.Shoukry, M.M. Potentiometric studies of the complex formation between trimethyltin(iv) and some selected amino acids. J. Inorg. Chem. 1992; 48: 271-277.
    108.Marcus, Y., Eliezer, I. The stability of mixed complexes in solution. Coord. Chem. Rev. 1969; 4: 273-322.
    109.Irving, H.M.N.H., Williams. The Stability of Transition - Metal Complexes. Journal of Chemical Society. 1953; 637: 3192-3210.
    110.Appleby, C.A., Wittenberg, B.A., Wiitenberg, J.B. Nicotinic acid as a ligand affecting leghrmoglobin structure and oxygen reactivity. Proc. Natl. Acad. Sci. USA. 1973; 70(2): 564-568.
    111.Pearson, R.J. Hard and soft acids and bases. J. Am. Chem. Soc. 1963: 85.
    112.Hassaan, A.M., Quenawy, M.T.A. Temperature, medium and structural effects on the acid dissociation constants of certain Schiff bases derived from isatin with some amino acids and aroylhydrazines. Arch. Pharm. Res. 1993; 16(3): 180-185.
    113.Basolo, F., Johnson., R.C. Coordination chemistry: the chemistry of metal complexes. Menlo Park, California: Benjamin, W.A., Inc.; 1964.
    114.Nicholls, D. Complexes and first-row transition elements. New York: American Elsevier Publishing Co., Inc.; 1975.
    115.Neuberger, A. Dissociation constants and structure zwitterions. In: Proceeding of the Royal Society of London. Series A, Mathematical and Physical; 1937; 1937. p. 68-96.
    116.Akila, E., Usharani, M., Rajavel, R. Potentially bioactive schiff base transition metal(II) complexes as selective DNA binding, cleavage, in vitro antimicrobial and in vitro antioxidant agents. Int. J. Med. Pharm. Sci. 2013; 3(2): 95-112.
    117.Adediji, J.F., Olayinka, E.T., Adebayo, M.A., Babatunde, O. Antimalarial mixed ligand metal complexes: synthesis, physicochemical and biological activities. Int. J. Phys. Sci. 2009; 4(9): 529-534.
    118.Kharadi, G.J., Patel, K.D. Synthesis, spectroscopic, thermal and biological aspect of mixed ligand copper(II) complexes. J. Therm. Anal. Cal. 2009; 96(3): 1019-1028.
    119.Maloň, M., Travnı́ček, Z., Maryško, M., et al. Metal complexes as anticancer agents 2. Iron(III) and copper(II) bio-active complexes with N6-benzylaminopurine derivatives. Inorg. Chim. Acta. 2001; 323(1–2): 119-129.
    120.Escoda, M.L., Torre, F.d.l., Salvado, V. The formation of mixed ligand complexes of Fe(III) with phosphoric and citric acids in 0.5 M NaNO3 aqueous solutions. Polyhedron. 1999; 18: 3269-3274.
    121.Gans, P., Sabatini, A., Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta. 1996; 43.
    122.Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys,. 1993; 98(7): 5648-5652.
    123.Lee, C., Yang, W., Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1998; 37(2): 785-789.
    124.Rassolov, V.A., Pople, J.A., Ratner, M.A., Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998; 109: 1223-1229.
    125.Ramos, J.M., Versiane, O., J., F., Soto, C.A.T. Fourier transform infrared spectrum, vibrational analysis and structural determination of the trans-bis(glycine)nickel(II) complex by means of the RHF/6-311G and DFT:B3LYP/6-31G and 6-311G methods. Spectrochim. Acta Part A. 2007; 68: 1370-1378.
    126.Ramos, J.M., Versiane, O., Felcman, J., Soto, C.A.T. FT-IR vibrational spectrum and DFT:B3LYP/6-31G and B3LYP/6-311G structure and vibrational analysis of glycinate - guanidoacetate nickel(II) complex: [Ni(Gly)(Gaa)]. Spectrochim. Acta Part A. 2009; 72: 182-189.
    127.Chachkov, D.V., Mikhailov, O.V. DFT B3LYP calculation of the spatial structure of Co(II), Ni(II), and Cu(II) template complexes formed in ternary systems metal(II) ion-dithiooxamide-formaldehyde. Russ. J. Inorg. Chem. 2009; 54: 1952–1956.
    128.Kawakami, J., Miyamoto, R., Fukushi, A., Shimozaki, K., Ito, S. Ab initio molecular orbital study of the complexing behavior of N-ethyl-1naphtalenecarboxamide as fluorescent chemosensors for alkali and alkaline earth metal ions. J. Photochem. Photobiol. A: Chem. 2002; 146: 163-168.
    129.Poolea, S.K., Patela, S., Dehringa, K., Workmana, H., Pooleb, C.F. Determination of acid dissociation constants by capillary electrophoresis. J. Chromatogr. A. 2004; 1037(1-2): 445-454.
    130.Gergely, A., Sovago, I., Nagypal, I., R.Kiraly. Equilibrium relations of alpha-aminoacid mixed complexes of transition Metal Ions. Inorg. Chim. Acta. 1972; 6(3): 435-439.
    131.Yamauchi, O., Hirano, Y., Nakao, Y., Nakahara, A. Stability of fused rings in metal chelates. VI. Structures and stability constants of the copper(II) chelates of dipeptides containing glycine and/or β-alanine. Canad. J. Chem. 1969; 47(18): 3441-3445.
    132.Yamauchi, O., Nakao, Y., Nakahara, A. Stability of fused rings in metal chelates. X. Structures and stability constants of the copper(II) complexes of tripeptides composed of glycine and/or β-alanine. Bull. Chem. Soc. Japan. 1973; 46(7): 2119-2124.
    133.Sekhon, B.S., Chopra, S.L. A thermodynamic study of the complexation reaction for some amino acids with cerium(III) and yttrium(III). Thermochim. Acta. 1973; 7: 151-157.
    134.Casolaro, M., Anselmi, C., Picciocchi, G. The protonation thermodynamics of ferulic acid/g-cyclodextrin inclusion compounds. Thermochim. acta. 2005; 425: 143-147.
    135.House, J.E. Inorganic Chemistry: Elsevier Inc.; 2008.
    136.Khalil, M.M., Fazary, A.E. Potentiometric studies on binary and ternary complexes of di- and trivalent metal ions involving some hydroxamic acids, amino acids, and nucleic acid components. Monatsh. Chem. 2004; 135: 1455-1474.
    137.Casale, A., Robertis, A.D., Stefano, C.D., Gianguzza, A., Patane, G., Rigano, C., Sannartano, S. Thermodynamic parameters for the formation of glycine complexes with magnesium (II), calcium (II), lead (II), manganese (II), cobalt (II), nickel (II), zinc (II) and cadmium (II) at differenr temperatures and ionic strengths, with particular reference to natural fluid conditions. Thermochim. Acta. 1995; 255: 109-141.
    138.Perrin, D.D. Stability constants of metal-ion complexes. International Union of Pure and Applied Chemistry pt. B. Organic Ligands. IUPAC chemical data series; no.22. 1st ed ed. New York: Pergamon Press; 1979.
    139.Hong, C.p., Kim, D.w., Choi, K.y., Kim, C.t., Choi, Y.g. Stability constants of first-row transition metal and trivalent lanthanide metal ion complexes with macrocyclic tetraazatetraacetic and tetraazatetramethylacetic acids. Bull.Korean Chem.Soc. 1999; 20(3): 297-300.
    140.Pagenkopf, G.K., Margerum, D.W. Proton-transfer reaction with copper(II)-triglycine (CuH-2L-). J. am. Chem. Soc. 1968; 90(2): 501-502.
    141.Basolo, F., Chen, Y.T., Murmann, R.K. Sterric effects and the stability of complex compounds. IV. The chelating tendencies of c-substituted ethylenediamines with copper(II) and nickel(II) ions. J. Am. Chem. Soc. 1954; 76: 956-959.
    142.Lenarcik, B., Kierzkowska, A. The Influence of alkyl chain length and steric effect on stability constants and extractability of Zn(II) complexes with 1-alkyl-4(5)-methylimidazoles. Separ. Sci. Technol. 2004; 39(15): 3485-3508.
    143.Hernowo, E. Stability constant study: First transition metal ions with biological important ligands; gallic acid, L-norleucine and nicotinic acid. Germany: LAP LAMBERT Academic Publishing; 2011.
    144.Sigel, H., Prijs, B., Martin, R.B. Stability of binary and ternary b-alanine containing dipeptide copper(II) complexes. Inorg. Chim. Acta. 1981; 56: 45-49.
    145.Turkel, N., Sahin, C. Stability of binary and ternary copper(II) complexes with 1,10-phenanthroline, 2,2'-bipyridyl and some a-amino acids in aqueous medium. Chem. Pharm. Bull. 2009; 57(7): 694-699.
    146.Khade, B.C., Deore, P.M., Arbad, B.R. Mixed-ligand complex formation of copper(II) with some aminoacids and drug dapsone. Int. J. Chem. Tech. Res. 2010; 2(2): 1036-1041.
    147.Lozano, M.J., Borras, J. Antibiotic as ligand. Coordinating behavior of the cephalexin towards Zn(II) and Cd(II) ions. J. Inorg. Biochem. 1987; 31(3): 187-195.

    QR CODE