簡易檢索 / 詳目顯示

研究生: 劉思賢
Szu-hsien Liu
論文名稱: 前傾式離心風扇之模擬與實驗
Computational and Experimental Investigations of a Forward-curved Blades Centrifugal Fan
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 楊鏡堂
Jing-Tang Yang
趙振綱
Ching-Kong Chao
陳明志
Ming-Jyh Chern
牛仰堯
Yang-Yao Niu
沈澄宇
Cherng-Yeu Shen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 287
中文關鍵詞: 前傾式離心風扇DFR風扇性能曲線風扇流場
外文關鍵詞: Forward-curved blades centrifugal fan, DFR, Fan flow, Fan performance curve
相關次數: 點閱:278下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今投影機相關產業受惠於視訊與影音技術之突破而蓬勃發展,但是光機產生的廢熱儼然成為設計挑戰,受限於光機外形結構,唯採用離心式風扇才能克服系統流阻並供給所需風量,相關風扇選用則必頇藉由風扇性能曲線匹配系統流阻來決定。針對投影機散熱需求,本文選定小型前傾式離心風扇做為研究標的。然而,現行數值模擬方法無法在風扇開發初期正確計算出與量測結果相接近之性能曲線,為改善當前預測風扇特性準確性較低之缺點,本研究使用計算流體動力學(Computational Fluid Dynamics, CFD)軟體STAR-CD,發展出一套有別於傳統方法之計算程序,該方法將AMCA標準量測設備內噴嘴的阻抗曲線以下游離散式多孔性阻抗區的模式導入計算模型,並據此稱為DFR方法(downstream flow resistance)。求解過程中,DFR方法將阻抗區上下游的靜壓差轉換成阻抗動量源併入動量守恆方程式,遵循噴嘴阻抗約束方程反覆運算壓力和流速等計算變量,確保通過阻抗區之流量與阻抗區上下游的靜壓差滿足噴嘴阻抗關係式,並使風扇出口靜壓值更接近實際情況。經比對依照AMCA標準程序實驗所量測的風扇特性,發現採用DFR方法可將預測結果的精確度提高至97%以上,然而傳統方法計算模擬的最大誤差卻高達62%。此外,使用DFR方法搭配靜態網格和動態網格所計算的性能曲線幾乎一致,這將有助於風扇設計者以DFR方法與靜態網格縮短產品開發時程。當背壓升高時,蝸殼出口區由傳統方法所計算的流速分佈明顯受堵無法順利流出轉而趨向舌部,這表示傳統方法未能正確計算風扇流場,導致預測流量值偏低,比對由DFR方法模擬之流場則無此現象並較為正確。


    The progress in the video related technologies fueled the projector industry to a flourish. However, heat dissipations from the optical engine became a design challenge. The fan selection for lamp cooling must be designed according to the interaction between fan performance curve and system impedance. Unfortunately, the existent simulation methods cannot predict the fan curve close to the measured results during the design stage. To improve the obvious defects of conventional methods, a newly developed computational approach by using the commercial code (STAR-CD) of computational fluid dynamics is employed. The main purpose is to study the fan flow and performance curve of the forward-curved blades centrifugal fan. The new approach, which is termed the “downstream flow resistance” (DFR) method, engaged the flow resistances of nozzles of the AMCA test rig in the downstream area of the computational domain. The engaged flow resistance is treated as the distributed momentum sources in a specific porous region. The static pressure at the fan exit is iteratively corrected to real values. By using the DFR method, the maximum deviation of the calculated fan curve from the measured results can attain a level less than 3%. This progress presents a dramatic improvement over the maximum deviation of about 62% obtained by using the conventional method. The improvement is due to the appropriate prediction of the fan flow by properly adjusted pressure drops across the porous region. Future designers will benefit from the high accuracy of fan performance prediction and shorter design cycle time by utilizing the DFR method with the static-grid scheme.

    摘要 .........................................................................i 英文摘要 ....................................................................ii 誌謝 .......................................................................iii 目錄 ........................................................................iv 符號索引 ....................................................................xi 表圖目錄 ....................................................................xv第一章 緒 論..................................................................1 1.1 研究動機 .................................................................1 1.2 文獻回顧 .................................................................4 1.3 研究目的 ................................................................16 第二章 計算方法..............................................................18 2.1 研究標的 ................................................................18 2.1.1 風扇結構 ..............................................................18 2.1.2 風扇標稱性能 ..........................................................19 2.2 計算流力求解軟體 ........................................................19 2.3 統御方程式 ..............................................................21 2.4 下游流阻法( DFR Method) .................................................23 2.5 紊流模式 ................................................................25 2.6 計算模型 ................................................................28 2.6.1 網格結構 ..............................................................28 2.6.2 網格獨立性分析 ........................................................28 2.6.3 模型比較 ..............................................................29 2.7 數值求解方法 ............................................................31 2.7.1 離散化方程式 ..........................................................31 2.7.2 時間離散 ..............................................................33 2.7.3 離散差分法 ............................................................33 2.7.4 求解演算法 ............................................................33 2.7.5 收斂標準 ..............................................................34 第三章 風扇性能量測實驗 .....................................................36 3.1 實驗方法 ................................................................36 3.2 實驗設備 ................................................................37 3.3 實驗量測不準度 ..........................................................38 3.4 風扇流量計算 ............................................................39 3.4.1 大氣空氣密度(Atmospheric air density) .................................39 3.4.2 腔室空氣密度(Chamber air density) .....................................40 3.4.3 風扇空氣密度(Fan air density) .........................................40 3.4.4 空氣動力黏滯係數(Dynamic air viscosity) ...............................41 3.4.5 噴嘴靜壓比(Alpha ratio) ...............................................41 3.4.6 噴嘴直徑比(Beta ratio) ................................................41 3.4.7 擴張係數(Expansion factor) ............................................41 3.4.8 雷諾數(Reynolds number) ...............................................42 3.4.9 噴嘴流量係數(Nozzle discharge coefficient) ............................42 3.4.10 腔室噴嘴流量(Airflow rate for chamber nozzles) .......................42 3.4.11 風扇流量(Fan airflow rate) ...........................................42 第四章 風扇性能曲線之模擬與實驗結果 .........................................43 4.1 風扇性能模擬之誤差 ......................................................43 4.2 軸流扇與離心扇之性能差異 ................................................43 4.3 風扇性能計算與實驗量測比較 ..............................................44 4.4 實驗與計算之壓力係數及流量係數 ..........................................46 4.4.1 靜壓係數(Static pressure coefficient) .................................47 4.4.2 總壓係數(Total pressure coefficient) ..................................47 4.4.3 流量係數(Flow coefficient) ............................................47 第五章 零靜壓時的流場與壓力場 ...............................................49 5.1 葉片間流道出口之流量分佈 ................................................49 5.2 葉片間沿流道之面平均靜壓變化 ............................................51 5.3 葉面在不同高度位置之靜壓變化 ............................................52 5.4 沿渦捲流道通過徑向截面之流量變化 ........................................54 5.5 沿渦捲流道徑向截面平均靜壓之變化 ........................................54 5.6 不同葉輪圓周角度沿蝸殼內壁高度之靜壓變化 ................................55 5.7 旋轉葉柵間流體之相對速度與流線 ..........................................56 5.7.1 旋轉葉柵間傳統靜態網格法計算之相對流速與流線 ..........................57 5.7.2 旋轉葉柵間DFR靜態網格法計算之相對流速與流線. ..........................59 5.7.3 旋轉葉柵間DFR動態網格法計算之相對流速與流線. ..........................61 5.8 旋轉葉柵間流體之靜壓分佈 ................................................63 5.8.1 旋轉葉柵間傳統靜態網格法計算之靜壓分佈 ................................63 5.8.2 旋轉葉柵間DFR靜態網格法計算之靜壓分佈 .................................65 5.8.3 旋轉葉柵間DFR動態網格法計算之靜壓分佈 .................................67 5.9 流體位於蝸殼內部橫向截面的速度與流線 ....................................69 5.9.1 傳統靜態網格法於蝸殼內部橫向截面計算之絕對流速與流線 ..................69 5.9.2 DFR靜態網格法於蝸殼內部橫向截面計算之絕對流速與流線 ...................70 5.9.3 DFR動態網格法於蝸殼內部橫向截面計算之絕對流速與流線 ...................72 5.10 流體位於蝸殼內部橫向截面的靜壓分佈 .....................................73 5.10.1 傳統靜態網格法於蝸殼內部橫向截面計算之靜壓分佈 .......................73 5.10.2 DFR靜態網格法於蝸殼內部橫向截面計算之靜壓分佈 ........................75 5.10.3 DFR動態網格法於蝸殼內部橫向截面計算之靜壓分佈 ........................77 第六章 Ps = 29.52 Pa時的流場與壓力場 ........................................80 6.1 葉片間流道出口之流量分佈 ................................................80 6.2 葉片間沿流道之面平均靜壓變化 ............................................81 6.3 葉面在不同高度位置之靜壓變化 ............................................82 6.4 沿渦捲流道通過徑向截面之流量變化 ........................................84 6.5 沿渦捲流道徑向截面平均靜壓之變化 ........................................85 6.6 不同葉輪圓周角度沿蝸殼內壁高度之靜壓變化 ................................85 6.7 旋轉葉柵間流體之相對速度與流線 ..........................................86 6.7.1 旋轉葉柵間傳統靜態網格法計算之相對流速與流線 ..........................86 6.7.2 旋轉葉柵間DFR靜態網格法計算之相對流速與流線............................88 6.7.3 旋轉葉柵間DFR動態網格法計算之相對流速與流線............................90 6.8 旋轉葉柵間流體之靜壓分佈 ................................................92 6.8.1 旋轉葉柵間傳統靜態網格法計算之靜壓分佈 ................................92 6.8.2 旋轉葉柵間DFR靜態網格法計算之靜壓分佈 .................................94 6.8.3 旋轉葉柵間DFR動態網格法計算之靜壓分佈 .................................97 6.9 流體位於蝸殼內部橫向截面的速度與流線 ....................................99 6.9.1 傳統靜態網格法於蝸殼內部橫向截面計算之絕對流速與流線 .................100 6.9.2 DFR靜態網格法於蝸殼內部橫向截面計算之絕對流速與流線 ..................101 6.9.3 DFR動態網格法於蝸殼內部橫向截面計算之絕對流速與流線 ..................103 6.10 流體位於蝸殼內部橫向截面的靜壓分佈 ....................................104 6.10.1 傳統靜態網格法於蝸殼內部橫向截面計算之靜壓分佈 ......................104 6.10.2 DFR靜態網格法於蝸殼內部橫向截面計算之靜壓分佈 .......................108 6.10.3 DFR動態網格法於蝸殼內部橫向截面計算之靜壓分佈 .......................112 第七章 Ps = 62.52 Pa時的流場與壓力場 .......................................116 7.1 葉片間流道出口之流量分佈 ...............................................116 7.2 葉片間沿流道之面平均靜壓變化 ...........................................118 7.3 葉面在不同高度位置之靜壓變化 ...........................................119 7.4 沿渦捲流道通過徑向截面之流量變化 .......................................122 7.5 沿渦捲流道徑向截面平均靜壓之變化 .......................................123 7.6 不同葉輪圓周角度沿蝸殼內壁高度之靜壓變化 ...............................123 7.7 旋轉葉柵間流體之相對速度與流線 .........................................125 7.7.1 旋轉葉柵間傳統靜態網格法計算之相對流速與流線 .........................125 7.7.2 旋轉葉柵間DFR靜態網格法計算之相對流速與流線 ..........................126 7.7.3 旋轉葉柵間DFR動態網格法計算之相對流速與流線 ..........................128 7.8 旋轉葉柵間流體之靜壓分佈 ...............................................129 7.8.1 旋轉葉柵間傳統靜態網格法計算之靜壓分佈 ...............................129 7.8.2 旋轉葉柵間DFR靜態網格法計算之靜壓分佈 ................................132 7.8.3 旋轉葉柵間DFR動態網格法計算之靜壓分佈 ................................134 7.9 流體位於蝸殼內部橫向截面的速度與流線 ...................................136 7.9.1 傳統靜態網格法於蝸殼內部橫向截面計算之絕對流速與流線 .................136 7.9.2 DFR靜態網格法於蝸殼內部橫向截面計算之絕對流速與流線 ..................138 7.9.3 DFR動態網格法於蝸殼內部橫向截面計算之絕對流速與流線 ..................140 7.10 流體位於蝸殼內部橫向截面的靜壓分佈 ....................................142 7.10.1 傳統靜態網格法於蝸殼內部橫向截面計算之靜壓分佈 ......................142 7.10.2 DFR靜態網格法於蝸殼內部橫向截面計算之靜壓分佈 .......................145 7.10.3 DFR動態網格法於蝸殼內部橫向截面計算之靜壓分佈 .......................148 第八章 流場與壓力場於不同背壓之變化 ........................................152 8.1 葉柵間流道出口之流量分佈於不同背壓之變化 ...............................152 8.2 葉柵間沿流道的面平均靜壓於不同背壓之變化 ...............................152 8.3 葉面靜壓分佈於不同背壓之變化 ...........................................153 8.4 渦捲流道徑向截面之流量分佈於不同背壓之變化 .............................154 8.5 渦捲流道徑向截面平均靜壓於不同背壓之變化 ...............................154 8.6 蝸殼壁面靜壓於不同背壓之變化 ...........................................155 8.7 旋轉葉柵間相對速度流場於不同背壓之變化 .................................155 8.8 旋轉葉柵間流體靜壓分佈於不同背壓之變化 .................................157 8.9 蝸殼內部橫向截面的絕對速度流場於不同背壓之變化 .........................158 8.10 蝸殼內部橫向截面的靜壓分佈於不同背壓之變化 ............................159 第九章 DFR方法於軸流扇性能曲線之模擬 .......................................161 9.1 DFR方法於單級軸流式風扇性能模擬 ........................................161 9.2 DFR方法於不同葉片攻角對單級軸流式風扇性能模擬 ..........................162 9.3 DFR方法於多級軸流式風扇性能模擬 ........................................162 第十章 結論與建議 ..........................................................164 10.1 結論...................................................................164 10.2 建議...................................................................166 參 考 文 獻.................................................................167

    [1]Eck, B., Fans: Design and Operation of Centrifugal, Axial-Flow and Cross-Flow Fans (translated and edited by R.S. Azad, D.R. Scott), Pergamon Press, Oxford, 1973.
    [2]Osborne, W. C., Fans, 2nd edition, Pergammon Press, Oxford, 1977.
    [3]Lakshminarayana, B., Fluid Dynamics and Heat Transfer of Turbomachinery, John Wiley & Sons, New York, 1996.
    [4]Bleier, F. P., Fan Handbook: Selection, Application, and Design, McGraw-Hill, New York, 1998.
    [5]Horlock, J. H. and Marsh, H., “Flow Models for Turbomachines,” Journal of Mechanical Engineering Science, Vol. 13. No. 5, 1971, pp. 358-368.
    [6]Reynolds, W. C., “Computation of Turbulent Flows,” Annual Review of Fluid Mechanics, Vol. 8, 1976, pp. 183-208.
    [7]Lakshminarayana, B., “Turbulence Modeling for Complex Shear Flows,” AIAA Journal, Vol. 24, No. 12, 1986, pp. 1900-1917.
    [8]Speziale, C. G. and Mhuiris, N. M. G., “Scaling Laws for Homogeneous Turbulent Shear Flows in a Rotating Frame,” Physics of Fluids A: Fluid Dynamics, Vol. 1, No. 2, 1989, pp. 294-301.
    [9]Rai, M. M., “Navier-Stokes Simulations of Rotor/Stator Interaction Using Patched and Overlaid Grids,” Journal of Propulsion and Power, Vol. 3, No. 5, 1987, pp. 387-396.
    [10]Lakshminarayana, B., “An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery-The 1990 Freeman Scholar Lecture,” ASME Journal of Fluids Engineering, Vol. 113, No. 3, 1991, pp. 315-352.
    [11]Menter, F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598-1605.
    [12]Liu, F. and Zheng, X., “A Strongly Coupled Time-Marching Method for Solving the Navier-Stokes and k-Turbulence Model Equations with Multigrid,” Journal of Computational Physics, Vol. 128, No. 2, 1996, pp. 289-300.
    [13]Moore, J. G. and Moore, J., “Realizability in Turbulence Modeling for Turbomachinery CFD,” ASME Paper No. 99-GT-24, 1999.
    [14]Horlock, J. H. and Denton, J. D., “A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective,” ASME Journal of Turbomachinery, Vol. 127, No. 1, 2005, pp. 5-13.
    [15]Raj, D. and Swim, W. B., “Measurements of the Mean Flow Velocity and Velocity Fluctuations at the Exit of an FC Centrifugal Fan Rotor,” ASME Journal of Engineering for Power, Vol. 103, No. 2, 1981, pp. 393-399.
    [16]Kind, R. J. and Tobin, M. G., “Flow in a Centrifugal Fan of the Squirrel-Cage Type,” ASME Journal of Turbomachinery, Vol. 112, No. 1, 1990, pp. 84-90.
    [17]Farge, T. Z. and Johnson, M. W., “Effect of flow rate on loss mechanisms in a backswept centrifugal impeller,” Internal Journal of Heat and Fluid Flow, Vol. 13, No. 2, 1992, pp. 189-196.
    [18]Chon, Y., Kim, K. I., and Kim, K., “A Knowledge-based System for centrifugal Fan Blade Design,” Engineering Application Artificial Intelligence, Vol. 6, No. 5, 1993, pp. 425-435.
    [19]Chen, K. S. and Sue, M. C., “Finite Element Analysis of Three-Dimensional Potential Flow in the Blade Passage of a Centrifugal Turbomachine,” Computers & Structures, Vol. 46, No. 4, 1993, pp. 625-632.
    [20]Zhang, M.-J., Pomfret, M. J., and Wong, C. M., “Three-Dimensional Viscous Flow Simulation in a Backswept Centrifugal Impeller at the Design Point,” Computers & Fluids, Vol. 25, No. 5, 1996, pp. 497-507.
    [21]Chen, P., Soundra-Nayagam, M., Bolton, A. N., and Simpson, H. C., “Unstable Flow in Centrifugal Fans,” ASME Journal of Fluids Engineering, Vol. 118, No. 1, 1996, pp. 128-133.
    [22]Kind, R. J., “Prediction of Flow Behavior and Performance of Squirrel-Cage Centrifugal Fans Operating at Medium and High Flow Rates,” ASME Journal of Fluids Engineering, Vol. 119, No. 3, 1997, pp. 639-646.
    [23]Qin, W. and Tsukamoto, H., “Theoretical Study of Pressure Fluctuations Downstream of a Diffuser Pump Impeller-Part 2: Effects of Volute, Flow Rate and Radial Gap,” ASME Journal of Fluids Engineering, Vol. 119, No. 3, 1997, pp.653-658.
    [24]Dilin, P., Sakai, T., Wilson, M., and Whitfield, A., “A computational and experimental evaluation of the performance of a centrifugal fan volute,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 212, No.4 A4, 1998, pp. 235-246.
    [25]Ubaldi, M., Zunino, P., and Ghiglione, A., “Detailed flow measurements within the impeller and the vaneless diffuser of a centrifugal turbomachine,” Experimental Thermal and Fluid Science, Vol. 17, No. 1-2, 1998, pp. 147-155.
    [26]Mariaux, G. and Gervais, Y., “Transient Behavior of Complex Aeraulic or Hydraulic Networks Including Centrifugal Fans or Pumps,” Journal of Engineering Mechanics, Vol. 126, No. 11, 2000, pp. 1180-1188.
    [27]Sinha, M., Katz, J., and Meneveau, C., “Quantitative Visualization of the Flow in a Centrifugal Pump With Diffuser Vanes-II: Addressing Passage-Averaged and Large-Eddy Simulation Modeling Issues in Turbomachinery Flows,” ASME Journal of Fluids Engineering, Vol. 122, No. 1, 2000, pp. 108-116.
    [28]Cao, R. and Kang, S.-H., “Computational Investigation on Flow Field and Performance of Centrifugal Airfoil Fan with Radial Clearance at Impeller Inlet,” European Journal of Mechanical and Environmental Engineering, Vol. 45, No. 2, 2000, pp. 73-78.
    [29]Li, W.-G., “Effects of viscosity of fluids on centrifugal pump performance and flow pattern in the impeller,” International journal of Heat and Fluid Flow, Vol. 21, No. 2, 2000, pp. 207-212.
    [30]Velarde-Suárez, S., Ballesteros-Tajadura, R., Santolaria-Morros, C., and González-Pérez, J., “Unsteady Flow Pattern Characteristics Downstream of a Forward-Curved Blades Centrifugal Fan,” ASME Journal of Fluids Engineering, Vol. 123, No. 2, 2001, pp. 265-270.
    [31]He, L. and Sato, K. “Numerical Solution of Incompressible Unsteady Flows in Turbomachinery,” ASME Journal of Fluids Engineering, Vol. 123, No. 3, 2001, pp. 680-685.
    [32]Thakur, S., Lin, W., and Wright, J., “Prediction of Flow in Centrifugal Blower Using Quasi-Steady Rotor-Stator Models,” Journal of Engineering Mechanics, Vol. 128, No. 10, 2002, pp. 1039-1049.
    [33]Bouquet, T., Kouidri, S., Bakir, F., and Rey, R. “Study of the 3D flows in the forward-curved blades centrifugal fans,” Progress in Computational Fluid Dynamics, Vol. 3, No. 1, 2003, pp. 13-21.
    [34]Seo, S.-J., Kim, K.-Y., and Kang, S.-H. “Calculations of three-dimensional viscous flow in a multiblade centrifugal fan by modeling blade forces,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 217, No. 3, 2003, pp. 287-297.
    [35]Kim, K.-Y. and Seo, S.-J., “Shape Optimization of Forward-Curved-Blade Centrifugal Fan with Navier-Stokes Analysis,” ASME Journal of Fluids Engineering, Vol. 126, No. 5, 2004, pp. 735-742.
    [36]Kim, K.-Y. and Seo, S.-J., “Application of Numerical Optimization Technique to Design of Forward-Curved Blades Centrifugal Fan,” JSME International Journal Series B, Vol. 49, No. 1, 2006, pp. 152-158.
    [37]Meakhail, T. and Park, S. O. “A study of Impeller-Diffuser-Volute Interaction in a Centrifugal Fan,” ASME Journal of Turbomachinery, Vol. 127, No .1, 2005, pp. 84-90.
    [38]Yu, Z., Li, S., He, W., Wang, W., Huang, D., and Zhu, Z., “Numerical Simulation of Flow Field for a Whole Centrifugal Fan and Analysis of the Effects of Blade Inlet Angle and Impeller Gap,” HVAC&R Research, Vol. 11, No. 2, 2005, pp. 263-283.
    [39]Khelladi, S., Kouidri, S., Bakir, F., and Rey, R., “Flow Study in the Impeller-Diffuser Interface of a Vaned Centrifugal Fan,” ASME Journal of Fluids Engineering, Vol. 127, No. 3, 2005, pp. 495-502.
    [40]Behzadmehr, A., Mercadier, Y., and Galanis, N., “Sensitivity Analysis of Entrance Design Parameters of a Backward-Inclined Centrifugal Fan Using DOE Method and CFD Calculations,” ASME Journal of Fluids Engineering, Vol. 128, No. 3, 2006, pp. 446-453.
    [41]Ballesteros-Tajadura, R., Velarde-Suárez, S., Hurtado-Cruz, J. P., and Santolaria-Morros, C., “Numerical Calculation of Pressure Fluctuations in the Volute of a Centrifugal Fan,” ASME Journal of Fluids Engineering, Vol. 128, No. 2, 2006, pp. 359-369.
    [42]Engin, T., “Study of tip clearance effects in centrifugal fans with unshrouded impellers using computational fluid dynamics,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 220, No. 6, 2006, pp. 599-610.
    [43]Bayomi, N. N., Abdel Hafiz, A., and Osman, A. M., “Effect of inlet straighteners on centrifugal fan performance,” Energy Conversion and Management, Vol. 47, No. 18-19, 2006, pp. 3307-3318.
    [44]Cui, B., Zhu, Z., Zhang, J., and Chen, Y., “The Flow Simulation and Experimental Study of Low-Specific-Speed High-Speed Complex Centrifugal Impellers,” Chinese Journal of Chemical Engineering, Vol. 14, No. 4, 2006, pp. 435-441.
    [45]Zhang, B., Huang, S., Sun, Z., Hui, S., Liu, J., and Qi, C., “Performance Improvement of Centrifugal Fan by Means of Numerical Simulation,” Chinese Journal of Mechanical Engineering, Vol. 19, No. 1, 2006, pp. 55-58.
    [46]Younsi, M., Bakir, F., Kouidri, S., and Rey, R., “Influence of Impeller Geometry on the Unsteady Flow in a Centrifugal Fan: Numerical and Experimental Analyses,” International Journal of Rotating Machinery, Vol. 2007, 2007, pp. 1-10.
    [47]Younsi, M., Bakir, F., Kouidri, S., and Rey, R., “Numerical and experimental study of unsteady flow in a centrifugal fan,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, Vol. 221, No. 7, 2007, pp.1025-1036.
    [48]Tsai, B. J. and Wu, C. L., “Investigation of a miniature centrifugal fan,” Applied Thermal Engineering, Vol. 27, No. 1, 2007, pp. 229-239.
    [49]Tsai, B.-J. and Huang, Y.-J., “Performance of a Half-Height, Innovative Cooling Fan,” Journal of the Chinese Institute of Engineers, Vol. 31, No. 6, 2008, pp. 913-923.
    [50]Velarde-Suárez, S., Ballesteros-Tajadura, R., Santolaria-Morros, C., and Pereiras-García, B., “Reduction of the aerodynamic tonal noise of a forward-curved centrifugal fan by modification of the volute tongue geometry,” Applied Acoustics, Vol. 69, No. 3, 2008, pp. 225-232.
    [51]Jang, C.-M., Kim, D.-W., and Lee, S.-Y., “Performance characteristics of turbo blower in a refuse collecting system according to operation conditions,” Journal of Mechanical Science and Technology, Vol. 22, No. 10, 2008, pp. 1896-1901.
    [52]Karanth, K. V., and Sharma, Y. N., “CFD Analysis on the Effect of Radial Gap on Impeller-Diffuser Flow Interaction as well as on the Flow Characteristics of a Centrifugal Fan,” International Journal of Rotating Machinery, Vol. 2009, 2009, pp. 1-8.
    [53]Walsh, P., Egan, V., Grimes, R., and Walsh, E., “Profile Scaling of Miniature Centrifugal Fans,” Heat Transfer Engineering, Vol. 30, No. 1-2, 2009, pp. 130-137.
    [54]Li, H., “Cooling of a permanent magnet electric motor with a centrifugal impeller,” International Journal of Heat and Mass Transfer, Vol. 53, No. 4, 2010, pp. 797-810.
    [55]Barrio, R., Parrondo, J., and Blanco, E., “Numerical analysis of the unsteady flow in the near-tongue region in a volute-type centrifugal pump for different operating points,” Computers & Fluids, Vol. 39, No. 5, 2010, pp. 859-870.
    [56]Wilcox, D. C., Turbulence Modeling for CFD, 2nd edition, DCW Industries, Inc., California, 1998.
    [57]Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonsteady Coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
    [58]Demirdžić, I. and Perić, M., “Space Conservation Law in Finite Volume Calculations of Fluid Flow,” International Journal for Numerical Methods in Fluids, Vol. 8, No. 9, 1988, pp. 1037-1050.
    [59]Liu, S. H., Huang, R. F., and Lin, C. A., “Computational and experimental investigations of performance curve of an axial flow fan using downstream flow resistance method,” Experimental Thermal and Fluid Science, Vol. 34, No. 7, 2010, pp. 827-837.
    [60]Patankar, S. V., Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., 1980, pp. 25-39.
    [61]Versteeg, H. K. and Malalasekera, W., An Introduction to computational fluid dynamics-The finite volume method, Addison Wesley Longman Limited, England, 1995.
    [62]AMCA Standard 210-99/ASHRAE Standard 51-1999, Laboratory Methods of Testing Fans for Aerodynamic Performance Rating, AMCA and ASHRAE, 1999.
    [63]Perry, A. E. and Steiner, T. R., “Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation processes,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 233-270.
    [64]Huang, R. F., Wu, J. Y., Jeng, J. H., and Chen, R. C., “Surface flow and vortex shedding of an impulsively started wing,” Journal of Fluid Mechanics, Vol. 441, 2001, pp. 265-292.
    [65]林重安,軸流式風扇之流場模擬與實驗,國立台灣科技大學機械工程研究所碩士論文,2007。
    [66]陳麗如,軸流式風扇葉片攻角與扭角對風扇性能與流場的影響,國立台灣科技大學機械工程研究所碩士論文,2008。
    [67]李國平,多級軸流式風扇之流場模擬與實驗,國立台灣科技大學機械工程研究所碩士論文,2009。

    無法下載圖示 全文公開日期 2016/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE