簡易檢索 / 詳目顯示

研究生: 楊凱傑
Kai-Chieh Yang
論文名稱: 應用支向量迴歸於具有健康指數的機械元件之 剩餘使用壽命預測
Implementing support vector regression to predict the remaining useful lifetime of mechanical components with health indicator
指導教授: 王福琨
Fu-Kwun Wang
口試委員: 羅士哲
Shih-Che Lo
朱道鵬
Tao-Peng Chu
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 46
中文關鍵詞: 預測性維修健康指數剩餘使用壽命支持向量迴歸
外文關鍵詞: predictive maintenance, health indicator, remaining useful life (RUL), support vector regression (SVR)
相關次數: 點閱:534下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   伴隨著科技日益精進的工業4.0時代下,仍有許多產業採用傳統的維修方式:矯正性維修(corrective maintenance)及預防性維修(preventive maintenance),高科技產品的生產線倘若發生設備停機便可能導致巨額的生產成本,為追求傳統產業的科技化,新型維護策略顯得相對的重要。而預測性維修(predictive maintenance)是近期迅速竄起的新興維修模式,能夠有效地預測設備故障時間,並事前進行維修使設備無預警失效的風險減至最低。本研究提供一個完善的預測性維修流程,監控分析機械元件的健康狀況,且運用支持向量迴歸(SVR, support vector regression)針對機械元件進行未來狀態的趨勢預測,依照剩餘使用壽命(RUL, remaining useful life)來規劃維修時間點,避免設備無預警停機的狀況發生。本研究在案例分析中,採用滾珠軸承(ball bearing)的監測訊號透過健康指數(HI, health indicator)的建立及預測,得到評估標準平均誤差值(%Er, percent error) -2.36%個位數的良好預測結果,評估分數(Score)更達到0.7024之高分,並且比較文獻Sutrisno et al. (2012)、Hong et al.、(2014) Lei et al.、(2016) 及Guo et al. (2017) 的分析結果。


    With the gradually increasing sophistication of technology in the era of Industry 4.0, there are still many industries using traditional maintenance methods: corrective maintenance and preventive maintenance. A shutdown of high-tech production lines could lead to huge amounts of production costs. Traditional industries should apply more sciences and technologies, so the new maintenance strategy appears to be significantly important. However, predictive maintenance is a rapidly emerging maintenance model that can effectively predict the shutdown time of equipment and minimize the risk of equipment failure without warning. This study provides a complete predictive maintenance process to analyze the monitoring health status of mechanical components and predict the future trend by support vector regression. According to the remaining useful life (RUL), to plan the timing of maintenance which could avoid the shutdown of equipment without warning. In this case study, the monitoring signals of ball bearings are used to establish health indicator and predict future trend. The prediction gets a good result that %Er value equals to -2.36% and Score values reaches 0.7024. Finally, the result will be compared with other methods of other literature.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 研究範圍與限制 2 1.4 研究流程 2 第二章 文獻探討 4 2.1 預測性維修 4 2.2 健康指數 5 2.3 預測方法 8 改良指數模型 8 粒子濾波演算法 10 時間遞歸神經網路 11 第三章 研究方法 14 3.1 特徵擷取 15 3.2 特徵選擇 16 相關係數 16 J48決策樹 16 3.3 特徵融合 19 3.4 支持向量迴歸預測 20 線性支持向量迴歸 20 非線性支持向量迴歸 22 參數的選擇方法 23 第四章 案例分析 24 4.1 滾珠軸承資料介紹 24 4.2 健康指數建立 25 特徵擷取 25 特徵選擇 27 特徵融合 30 4.3 SVR預測 33 第五章 結論 38 參考文獻 39 附錄 40 A. 個案讀取資料組1_3運用絕對最大值Max|x_i|尋找異常點程式碼. 40 B. 個案讀取資料組1_3執行特徵擷取程式碼. 41 C. 個案讀取資料組1_3執行特徵選擇:相關係數程式碼 43 D. 個案讀取資料組1_3執行特徵融合:對數化馬氏距離程式碼 43 E. 個案讀取資料組1_3執行SVR預測程式碼程式碼 44   圖目錄 圖1.1研究流程 3 圖2.1預測性維修的架構 (MBA智庫百科, 2016) 4 圖2.2經由機器學習診斷的預測性維修流程 (Industrial IoT, 2017) 4 圖2.3健康指數的建立 (Guo et al., 2017) 5 圖2.4時間遞歸神經網路示意圖 (Guo et al., 2017) 10 圖2.5長短期記憶示意圖 (Guo et al., 2017) 11 圖3.1數據分析流程 14 圖3.2 SVR方程式關係示意圖 (Rosenbaum et al, 2013) 21 圖4.1利用水平及垂直震動訊號尋找資料組1_3的異常點 25 圖4.2資料組1_3測試初期出現雜訊 26 圖4.3資料組1_3利用相關係數特徵選擇的篩選結果 27 圖4.4資料組1_3的特徵分類狀況 28 圖4.5資料組1_3最大值特徵的J48決策樹分析結構 29 圖4.6資料組1_3利用J48決策樹特徵選擇的篩選結果 29 圖4.7資料組1_3的健康指數log(MD)趨勢線(相關係數特徵選擇法) 31 圖4.8資料組1_3的健康指數log(MD)趨勢線(J48決策樹特徵選擇法) 31 圖4.9三組學習資料的完整健康指數趨勢線(相關係數選擇法) 32 圖4.10資料組1_3的SVR預測趨勢線(相關係數選擇法) 34 圖4.11資料組1_3的SVR預測趨勢線(J48決策樹選擇法) 34 圖4.12資料組2_6調整前的SVR預測趨勢線(J48決策樹選擇法) 35 圖4.13資料組2_6調整後的SVR預測趨勢線(J48決策樹選擇法) 35   表目錄 表2.1 28種特徵擷取 (Lei et al., 2016) 6 表2.2 14種特徵擷取 (Guo et al., 2017) 6 表3.1 15種時域特徵擷取 15 表4.1 三類測試環境的學習及測試軸承(IEEE 2012 PHM Prognostic Challenge) 24 表4.2滾珠軸承異常點及實際失效時間(單位:秒) 26 表4.3經由特徵選擇所剩餘的各資料組特徵數目 30 表4.4兩種方法的失效參考值 32 表4.5料組1_3的SVR學習模型及預測步驟 33 表4.6 SVR預測結果 36 表4.7 RUL預測結果比較 37 表4.8 %Er預測結果比較 37 表4.9 Score預測結果比較 37

    中文文獻
    高美卿、劉艷萍、連琨。支持向量回歸機在風電系統槳距角預測中的應用。電子設計工程,18,105-107 (2010)

    英文文獻
    Fletcher, R., Practical Methods of Optimization, 2nd Edition, John Wiley & Sons, Inc., Chichester (1987).
    Guo L., N. P. Li, F. Jia, Y. G. Lei and J. Lin, “A recurrent neural network based health indicator for remaining useful life prediction of bearings,” Neurocomputing, 240, 98-109 (2017).
    Hong S., Z. Zhou, E. Zio and K. Hong, “Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method,” Digital Signal Processing, 27, 159-166 (2014).
    Lei Y. G., N. P. Li, S. Gontarz, J. Lin, S. Radkowski and J. Dybala, “A model-based method for remaining useful life prediction of machinery,” IEEE Transactions on Reliability, 65, 1314-1326 (2016).
    Li N. P., Y. G. Lei, J. Lin and S. X. Ding, “An improved exponential model for predicting remaining useful life of rolling element bearings,” IEEE Transactions on Industrial Electronics, 62, 7763-7773 (2015).
    Mahalanobis, P. C., “On the generalized distance in statistics,” Proceedings of the National Institute of Sciences of India, 2, 49-55, (1936)
    Meyer D., E. Dimitriadou, K. Hornik, A. Weingessel, F. Leisch, C. C. Chung and L. C. Chen, “Package e1071,” Repository CRAN (2017).
    Qiu H., J. Lee, J. Lin and G. Yu, “Robust performance degradation assessment methods for enhanced rolling element bearing prognostics,” Advanced Engineering Informatics, 17, 127-140 (2003).
    Quinlan J. R., “Induction of decision trees,” Machine Learning, 1, 81-106 (1986).
    Quinlan J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, USA (1993).
    Rosenbaum L., A. Dörr, M. R. Bauer, F. M. Boeckler and A. Zel, “Inferring multi-target QSAR models with taxonomy-based multi-task learning,” Journal of Cheminformatics, 5, 1-20 (2013).
    Satishkumar R. and V. Sugumaran, “Estimation of remaining useful life of bearings based on support vector regression,” Indian Journal of Science and Technology, 9, 1-7 (2016).
    Schölkopf B., A. Smola, K. R. Müller, “Nonlinear component analysis as a kernel eigenvalue problem,” Neural Computation, 10, 1299-1319 (1998).
    Schölkopf, B., “Statistical learning and kernel methods,” Technical Report, Microsoft Research, Cambridge (2000).
    Smola A. J. and B. Schölkopf, “A tutorial on support vector regression,” Statistics and Computing, 14, 199-222 (2004).
    Sutrisno E., H. Oh, A. Vasan and M. Pecht, “Estimation of remaining useful life of ball bearings,” Prognostics and Health Management, 2012 IEEE Conference, Denver, CO, USA (Jun. 18-21 2012).
    Vapnik V., The Nature of Statistical Learning Theory, Springer-Verlag New York Inc., New York, USA (1995).
    Wang Y., Y. Z. Peng, Y. Y. Zi, X. H. Jin, and K. L. Tsui, “A two-stage data-driven-based prognostic approach for bearing degradation problem,” IEEE Transactions on Industrial Informatics, 11, 924-932 (2016).
    Yang F., M. S. Habibullah, T. Zhang, Z. Xu, P. Lim and S. Nadarajan, “Health index-based prognostics for remaining useful life predictions in electrical machines,” IEEE Transactions on Industrial Informatics, 63, 2633-2644 (2016).

    網路文獻
    IEEE PHM 2012 Prognostic Challenge。網址:http://www.femto-st.fr/en/Research-departments/AS2M/Research-groups/PHM/IEEE-PHM-2012-Data-challenge.php。 上網日期:2017-09-01 (2012) 。
    Industrial IoT。網址:https://industrial-iot.com/2017/02/predictive-maintenance-or-predictive-operations/。上網日期:2017-11-01 (2017) 。
    MBA智庫百科。網址:http://wiki.mbalib.com/zh-tw/。上網日期:2017-11-01 (2016) 。
    Time 時代雜誌。網址:http://time.com/4088793/elevator-max-cloud-thyssenkrupp/。上網日期:2017-11-20 (2015) 。
    遠見雜誌。網址:https://www.gvm.com.tw/article.html?id=32232。上網時間:2017-11-20 (2016)。

    QR CODE