簡易檢索 / 詳目顯示

研究生: 王執翰
Chih-Han Wang
論文名稱: 有機小分子太陽能電池:製程基板溫度對元件電性之影響
Effects of molecular packing in CuPc/C60 based photovoltaic device: temperature dependence
指導教授: 李志堅
Chih-Chien Lee
口試委員: 王錫九
Shea-Jue Wang
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 101
中文關鍵詞: 有機薄膜太陽能電池雙層異質接面結構基板溫度
外文關鍵詞: CuPc/C60, Bilayer heterojunction, substrate temperature
相關次數: 點閱:311下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以銅酞花青(copper phthalocyanine,CuPc)薄膜作為電子施體(Donor)材料,與富勒烯 (C60) 作為電子受體材料。以高真空蒸鍍系統製作雙層異質接面結構之有機薄膜太陽能電池,探討基板溫度條件對於銅酞花青成膜性質與其元件效率之間的影響。利用X光繞射儀(XRD)及原子力顯微鏡(AFM)觀察分子排列與薄膜表面形貌;並使用光電子光譜儀(AC-2)、紫外/可見光吸收光譜儀(UV/Visible Spectrophotometer)、太陽光模擬系統及空間電荷限制電流(SCLC)進行元件光電性質分析。
    實驗結果顯示,隨著基板溫度升高,分子的(結晶面200)結晶性愈好,且薄膜表面形貌粗糙度降低。而分子的最高佔有軌域(Highest occupied molecular orbital,HOMO)也隨著基板溫度的升高而降低。由於銅酞花青薄膜結晶性質改變,其紫外光吸收光譜之特徵吸收峰(波長618 nm)強度隨基板溫度升高而降低,同時觀察到紅位移的現象。載子遷移率則隨溫度上升而有下降的趨勢。從電性量測結果得知,隨著基板溫度上升,效率呈現負向成長,甚至發生不規則的特性曲線。經上述結果推論,銅酞花青薄膜在不同溫度下結晶性的改變,使得主動層與陽極界面能障隨之改變;溫度越高,界面能障越大,進而影響自由載子的傳遞,降低整體元件之光電轉換效率。


    In this study, copper (II) phthalocyanine (CuPc) thin films were prepared by vacuum deposition at different substrate temperatures on indium tin oxide (ITO) as the electron donor and fullerene (C60) as the acceptor based bilayer heterojunction organic photovoltaic cells. The purpose of this study was to investigate the effects of molecular packing on performance in organic solar cells. The morphology and structure of the CuPc films was examined by X-ray diffraction (XRD) and atomic force microscopy (AFM) measurement. The optical and electronic properties have been studied by space charge limited current model, photoelectron spectrometer (AC-2) and UV/Visible spectrophotometer.
    The results show that various substrate temperatures strongly influences the CuPc film properties and hence the device performance. It has found that (i) improve the molecular ordering and crystallization, (ii) the highest occupy molecular orbital (HOMO) was decreased from 5.18 eV~5.10 eV, (iii) the peak wavelengths in absorption spectrum was shifted from 618 nm to 624 nm and the intensity decreased gradually, (iv) the carrier mobility was decreased and (v) a S-shape kink leading to loss of Voc and Jsc and FF when the substrate temperature increases. In conclusion, we attributed this S-shape kink to the barrier induced the carrier accumulate.

    總目錄 致謝........................................I 摘要.......................................II Abstract..................................III 總目錄.....................................IV 圖目錄...................................VIII 表目錄.....................................XI 第一章 緒論.................................1 1-1 前言....................................1 1-1-1 太陽能電池簡介......................1 1-1-2 太陽能電池產業現況..................3 1-1-3 太陽光輻射能........................5 1-2 小分子有機太陽能電池的歷史演進..........6 1-2-1 單層結構............................6 1-2-2 雙層異質接面結構....................7 1-2-3 單層異質接面結構....................10 1-2-4 結合平面與掺混異質接面結構..........12 1-2-5 疊層結構…..........................13 1-3 高分子有機太陽能電池的歷史演進..........14 1-3-1 前言................................14 1-3-2 雙層異質接面結構....................15 1-3-3 單層異質接面結構....................16 1-3-3.1 單層異質接面結構-熱退火處理.......18 1-3-3.2 單層異質接面結構-不同掺雜比例.....19 1-3-3.3 溶劑處理..........................20 1-3-3.4 單層異質接面結構-不同溶劑選擇…...21 1-3-3.5 單層異質接面結構-不同分子量.......21 1-3-3.6 單層異質接面結構-光學間隙層.......22 1-3-4 低能隙共軛高分子及添加劑處理........22 1-4 研究動機與方法..........................25 第二章 理論基礎.............................25 2-1 有機薄膜太陽能電池的工作原理............27 2-2 有機薄膜太陽能電池之特性分析............29 2-3 元件的I-V特性模組.......................32 2-4 有機薄膜太陽能電池之等效電路............34 2-5 空間電荷限制電流量測法..................35 2-6 X光繞射原理............................37 第三章 實驗.................................39 3-1 實驗藥品................................39 3-1-1 基板................................39 3-1-2 材料................................39 3-2 實驗儀器................................39 3-3 元件製作流程............................47 3-3-1 昇華................................48 3-3-2 ITO 玻璃圖案化......................48 3-3-3 ITO玻璃基板清洗.....................51 3-3-4 熱蒸鍍機蒸鍍有機薄膜................52 3-3-5 元件封裝............................52 3-4 量測分析................................54 3-4-1 I-V 特性曲線量測....................54 3-4-2 紫外光/可見光光譜量測...............55 3-4-3 X光繞射光譜量測.....................55 3-4-5 光電子光譜儀(AC-2)..................55 第四章 結果與討論...........................56 4-1 陽極工函數的穩定度探討..................56 4-1-1 紫外光臭氧處理對工函數的影響........56 4-1-2 溶劑處理過後的穩定度探討............58 4-2 基板溫度對銅酞花青薄膜結構的影響........61 4-2-1 光電子光譜儀(AC-2)的量測............61 4-2-2 紫外光─可見光光譜分析..............61 4-2-3 X-Ray 繞射分析......................64 4-2-4 原子力顯微鏡表面結構圖..............67 4-2-5 載子移動率的量測....................69 4-3 基板溫度對元件效率的影響................72 4-3-1 有機薄膜太陽能電池之I-V特性曲線分析.72 第五章 結論與未來展望.......................78 5-1 結論....................................78 5-2 未來展望................................79 參考文獻....................................80 圖目錄 圖1-1-1 太陽頻譜圖...........................5 圖1-1-2 為空氣質量之示意圖...................5 圖1-2-1 單層元件結構圖.......................6 圖1-2-2 單層元件結構工作原理示意圖...........7 圖1-2-3 雙層元件結構圖.......................7 圖1-2-4 雙層異質接面元件結構工作原理示意圖...8 圖1-2-5 雙異質接面結構的能階示意圖...........9 圖1-2-6 混合型結構的工作原理示意圖..........10 圖1-2-7 單層異質接面示意圖..................11 圖1-2-8 單層異質接面能階示意圖..............12 圖1-2-9 結合平面與參混異質接面能階示意圖....13 圖1-2-10 疊層結構能階示意圖.................14 圖1-3-1 雙層異質接面元件結構................16 圖1-3-2 混合型元件結構......................17 圖1-3-3 MDMO-PPV分子結構圖..................18 圖1-3-4 PCBM分子結構圖-.....................18 圖1-3-5 使用(a)甲苯(b)氯苯溶劑所拍攝的AFM表面.18 圖1-3-6 P3HT分子結構圖......................19 圖1-3-7 不同PCBM濃度下與覆蓋鋁電極後的有機薄膜AFM表面影像結果圖.......20 圖1-3-8 不同薄膜乾燥速率之入射光子對電子轉換效率圖.21 圖1-3-9 加了光學間隙層後的光場分佈示意圖...........22 圖1-3-10 PCPDTBT低能隙共軛分子結構式...............23 圖1-3-11 IPCE頻譜圖包含AM 1.5G太陽光光譜以及P3HT:C61-PCBM退火處理與PCPDTBT:C71-PCBM添加劑處理.................24 圖1-3-12 PCPDTBT:PCBM元件內加入添加劑分子之示意圖..24 圖1-3-13 PCDTBT:PC70BM 的元件與材料結構圖..........25 圖2-1-1有機太陽能電池工作機制......................27 圖2-1-2雙層元件結構工作原理(a)激子有效分離(b)激子無法離.28 圖2-2-1 有機太陽能電池之I-V曲線圖..................29 圖2-2-2 從照光下的I-V曲線算出並聯電阻(Rsh)和串聯電阻(Rs) .....32 圖2-3-1 元件的I-V特性模組..........................32 圖2-4-1 有機太陽能電池之等效電路圖.................35 圖2-5-1 Frenkel效應在強電場下的陷阱有效深度示意圖..37 圖2-6-1以X光作晶體繞射布拉格方程式之幾何關係圖.....38 圖3-2-1 熱蒸鍍機的示意圖...........................41 圖3-2-2 手套箱構造圖...............................42 圖3-2-3 有機材料HOMO能階測量結果圖.................43 圖3-2-4 AC-2量測機制示意圖.........................44 圖3-2-5 太陽光模擬系統.............................45 圖3-3-1 實驗流程圖.................................48 圖3-3-2 ITO玻璃經黃光製程後用來當作元件的基板......49 圖3-3-3 太陽能電池元件的封裝示意圖.................53 圖3-3-4有機太陽能電池元件結構圖....................53 圖4-1-1 ITO在UV-Ozone處理前的工函數量測結果........57 圖4-1-2 ITO經UV-Ozone處理10分鐘後的工函數量測結果..57 圖4-1-3 ITO浸泡至IPA溶劑內3小時後的工函數量測結....58 圖4-1-4 ITO浸泡至IPA溶劑內8小時後的工函數量測結果..59 圖4-1-5 ITO浸泡至IPA溶劑內24小時後的工函數的量測結果....60 圖4-2-1 CuPc蒸鍍在不同基板溫度的HOMO能階測量圖..........61 圖4-2-2 CuPc薄膜在不同基板溫度條件下的吸收光譜圖........62 圖4-2-3 歸一化後的吸收光譜圖.......................63 圖4-2-4 對主吸收峰歸一化後的吸收光譜圖.............63 圖4-2-5 不同基板溫度下所得銅酞花青薄膜XRD分析圖....64 圖4-2-6 利用勞倫茲曲線凝合而得的XRD分析圖..........65 圖4-2-7 CuPc分子蒸鍍在不同ITO玻璃基板溫度下的示意圖...66 圖4-2-8 不同基板溫度下所得銅酞花青薄膜的XRD分析圖.....67 圖4-2-9 不同基板溫度蒸鍍銅酞花青薄膜在ITO玻璃基板 上的AFM表面型態圖(a)30℃(b)50℃(c)100℃(d)150℃.......69 圖4-2-10 基板溫度在30℃的條件下SCLC量測結果...........71 圖4-2-11 基板溫度在50℃的條件下SCLC量測結果...........71 圖4-2-12 基板溫度在100℃的條件下SCLC量測結果..........72 圖4-3-1 不同基板溫度蒸鍍銅酞花青薄膜在照光的情況下之元件電性比較圖..............................................73 圖4-3-2 不同基板溫度蒸鍍銅酞花青薄膜在未照光的情 況下之元件電性比較圖......75 圖4-3-3 不同基板溫度蒸鍍銅酞花青薄膜的元件量測結果....76 圖4-3-4 不同基板溫度蒸鍍銅酞花青薄膜的元件電性比較圖..77 表目錄 表 1-1 太陽能電池模組變換效率..........................4 表 4-1 不同基板溫度蒸鍍銅酞花青薄膜的XRD量測結果......66 表 4-2 不同基板溫度蒸鍍銅酞花青薄膜的元件量測結果.....73

    [1] A. E. Becquerel and C. R. Acad, Science 9, 145 (1839).
    [2] H. Spanggaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells 83, 125 (2004).
    [3] C. W. Tang and A. C. Albrecht, J. Chem. Phys. 62, 2139 (1975).
    [4] C. W. Tang, Appl. Phys. Lett. 48, 183 (1986).
    [5] G. Yu, C. Zhang, and A. J. Heeger, Appl. Phys. Lett. 62, 585 (1993).
    [6] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2004).
    [7] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 85, 5757 (2004).
    [8] M. R. Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
    [9] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, J. Appl. Phys. 98, 124903 (2005).
    [10] B. A. Greggs, MRS Bull 30, 20 (2005).
    [11] R. N. Marks, J. J. M. Halls, D. D. C. Bradley, R. H. Friend, and A. B. Holmes, J. Phys. Condes. Matter. 6, 1379 (1994).
    [12] S. Barth and H. Bässler, Phys. Rev. Lett. 79, 4445 (1997).
    [13] B. A. Gregg and M. C. Hanna, J. Appl. Phys. 93, 3605 (2003).
    [14] D. Braun and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
    [15] P. B. Miranda, D. Moses, and A. J. Heeger, Phys. Rev. B 64, 081201 (2001).
    [16] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
    [17] R. Sokel and R. C. Hughes, J. Appl. Phys. 53, 7414 (1982).
    [18] 工業材料第 268 期 2009 年 04 月
    [19] 工業材料第 255 期 2008 年 03 月
    [20] 工業材料第 262 期 2008 年 10 月
    [21] H. Hoppea and N. S. Sariciftci, J. Mater. Res. 19, 1924 (2004).
    [22] P. Peumans, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000).
    [23] Y. Hirose, A. Kahn, V. Aristov, P. Soukiassian, V. Bulovic, and S. R. Forrest, Phys. Rev. B 54, 13748 (1996).
    [24] P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).
    [25] A. L. Burin and M. A. Ratner, J. Phys. Chem. A 104, 4704 (2000).
    [26] Y. Wu, Y. C. Zhou, H. R. Wu, Y. Q. Zhan, J. Zhou, S. T. Zhang, J. M. Zhao, Z. J. Wang, X. M. Ding, and X. Y. Hou, Appl. Phys. Lett. 87, 044104 (2005).
    [27] S. E. Burns, N. Pfeffer, J. Griiner, M. Remmers, T. Javoreck, D. Neher, and R. H. Friend, Adv. Mater. 9, 395 (1997).
    [28] L. A. A. Pettersson, L. S. Roman, and O. Ingana‥s, J. Appl. Phys. 86, 487 (1999).
    [29] H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley, Nature 318, 162 (1985).
    [30] T. Kietzke, Advances in OptoElectronics 2007, 15 (2007).
    [31] P. Peumans, V. Bulovic, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
    [32] G. Yu, K. Pakbaz, and A. J. Heeger, Appl. Phys. Lett. 64, 3422 (1994).
    [33] S. R. Forrest, Chem. Rev. 97, 1793 (1997).
    [34] G.Yu, J.Gao, J.C.Hummelen, F.Wudl, and A.J.Heeger, Science 270, 1789 (1995).
    [35] P. Peumans, S. Uchida, and S. R. Forrest, Nature 425, 158 (2003).
    [36] F. Yang, M. Shtein, and S. R. Forrest, J. Appl. Phys. 98, 014906 (2005).
    [37] F. Yang, M. Shtein, and S. R. Forrest, Nat. Mater. 4, 37 (2005).
    [38] S. Uchida, J. Xue, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett. 84, 4218 (2004).
    [39] J. Xue, B. P. Rand, S. Uchida, and S. R. Forrest, Adv. Mater. 17, 66 (2005).
    [40] J. H. SchoÈn, Ch. Kloc, E. Bucher, and B. Batlogg, Nature 403, 408 (2000).
    [41] J. H. SchoÈn, Ch. Kloc, E. Bucher, and B. Batlogg, Synth. Met. 115, 177 (2000).
    [42] W. B. Chen, H. F. Xiang, Z. X. Xu, B. P. Yan, V. A. L. Roy, C. M. Che, and P. T. Lai, Appl. Phys. Lett. 91, 191109 (2007).
    [43] S. Yoo, B. Domercq, and B. Kippelen, Appl. Phys. Lett. 85, 5427 (2004).
    [44] A. C. Mayer, M. T. Lloyd, and D. J. Herman, Appl. Phys. Lett. 85, 6272 (2004).
    [45] B. P. Rand, J. Xue, F. Yang, and S. R. Forrest, Appl. Phys. Lett. 87, 233508 (2005).
    [46] Z. Bao, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett. 69, 3066 (1996).
    [47] S. Karan and B. Mallik, Solid State Communications 143, 289 (2007).
    [48] S. B. Rim, R. F. Fink, J. C. Schöneboom, P. Erk, and P. Peumans, Appl. Phys. Lett. 91, 173504 (2007).
    [49] S. K. So, W. K. Choi, C.H. Cheng, L. M. Leung, and C. F. Kwong, Appl. Phys. A 68, 447 (1999).
    [50] A. Hadipour, B. de Boer, and P.W.M. Blom, Org. Electron. 9, 617 (2008).
    [51] A. G. F. Janssen, T. Riedl, S. Hamwi, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 91, 073519 (2007).
    [52] G. Dennler, H. J. Prall, R. Koeppe, M. Egginger, R. Autengruber, and N. S. Sariciftci, Appl. Phys. Lett. 89, 073502 (2006).
    [53] D. W. Zhao, X. W. Sun, C. Y. Jiang, A. K. K. Kyaw, G. Q. Lo, and D. L. Kwong, Appl. Phys. Lett. 93, 083305 (2008).
    [54] A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. Turbiez, M. M. Wienk, R. A. J. Janssen, and P. W. M. Blom, Adv. Funct. Mater. 16, 1897 (2006).
    [55] A. Hadipour, B. de Boer, and P. W. M. Blom, Adv. Funct. Mater. 18, 169 (2008).
    [56] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Danteand, and A. J. Heeger, Science 317, 222 (2007).
    [57] A. Kumar, S. Sista, and Y. Yang, J. Appl. Phys. 105, 094512 (2009).
    [58] B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
    [59] N. Li, B. E. Lassiter, R. R. Lunt, G. Wei, and S. R. Forrest, Appl. Phys. Lett. 94, 023307 (2009).
    [60] G. Yu, C. Zhang, and A. J. Heeger, Appl. Phys. Lett. 64, 1540 (1994).
    [61] N. S. Sariciftci, D. Braun, C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, Appl. Phys. Lett. 62, 585 (1993).
    [62] G. Yu, J. Gao, J. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
    [63] A. J. Heeger, Reviews of Modern Physics 73, 681 (2001).
    [64] H. Shirakawa, Reviews of Modern Physics 73, 713 (2001).
    [65] A. G. MacDiarmid, Reviews of Modern Physics 73, 701 (2001).
    [66] C. K. Chiang, C. R. Fincher, J., Y. W. Park, A. J. Heeger, H. Shirakawa , E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett. 39, 1098 (1977).
    [67] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990).
    [68] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature 401, 685 (1999).
    [69] D. Chirvase, J. Parisi, J. C. Hummelen, and V. Dyakonov, Nanotechnology 15, 1317 (2004).
    [70] S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz, and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001).
    [71] M. Al-Ibrahima, O. Ambacher, S. Sensfuss, and G. Gobsch, Appl. Phys. Lett. 86, 201120 (2005).
    [72] P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, and C. J. Brabec, Chem. Mater. 17, 2175 (2005).
    [73] R. C. Hiorns, R. de Bettignies, J. Leroy, S. Bailly, M. Firon, C. Sentein, A. Khoukh, H. Preud’homme, and C. D. Lartigau, Adv. Funct. Mater. 16, 2263 (2006).
    [74] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
    [75] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater.13, 85 (2003).
    [76] X. Yang, J. Loss, S.C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005).
    [77] Y. Kim, S. Houlis, J. Nelson, D. D. C. Bradley, S. Cook, and J. R. Durrant, J. Mater. Sci. 40, 1371 (2005).
    [78] M. R. Reyes, K. Kim, and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).
    [79] J. Huang, G. Li, and Y. Yang, Appl. Phys. Lett. 87, 112105 (2005).
    [80] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
    [81] D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, J. Appl. Phys. 93, 3376 (2003).
    [82] J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006).
    [83] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).
    [84] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater. 6, 497 (2007).
    [85] J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc. 130, 3619 (2008).
    [86] S. H. Park, A. Roy, S. Beaupre′, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nature photonics. 3, 297 (2009).
    [87] P. N. Murgatroyd, J. Phys. D: Appl. Phys. 3, 151 (1970).
    [88] K. Hong, J. W. Lee, S. Y. Yang, K. Shin, H. Jeon, S. H. Kim, C. Yang, and C. E. Park, Org. Electron. 9, 21 (2008).
    [89] J. E, S. Kim, E. Lim, K. Lee, D. Cha, and B. Friedman, Appl. Surf. Sci. 205, 274 (2003).
    [90] B. P. Rand, J. Xue, S. Uchida, and S. R. Forrest, J. Appl. Phys. 98, 124902 (2005).

    無法下載圖示 全文公開日期 2015/01/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE