簡易檢索 / 詳目顯示

研究生: Gretel Gaby Lalitan
Gretel Gaby Lalitan
論文名稱: 主動底板於減少斜面滾動隔震支承撞擊之分析與實驗驗證
Active Base Control for Pounding Mitigation of Equipment on Sloped-Rolling Type Isolator
指導教授: 陳沛清
Pei-Ching Chen
口試委員: 汪向榮
Shiang-Jung Wang
許丁友
Ting-Yu Hsu
游忠翰
Chung-Han Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 127
中文關鍵詞: sloped rolling-type isolatorfree-standing rigid blockcontrollable base platefuzzy logic controlgain scheduling controllinear control
外文關鍵詞: sloped rolling-type isolator, free-standing rigid block, controllable base plate, fuzzy logic control, gain scheduling control, linear control
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Contents Abstract i Acknowledgment ii Contents iii List of Tables vii List of Figures ix List of Symbols xiii CHAPTER 1: INTRODUCTION 1 1.1. Research background 1 1.2. Scope and objective 3 1.3. Outline of the thesis 3 CHAPTER 2: LITERATURE STUDY 5 2.1. Sloped Rolling-Type Isolator 5 2.2. Controlled Sloped Rolling-Type Isolator 7 2.3. Response of Free-Standing Equipment 8 2.3.1. Rest Mode 9 2.3.2. Slide Mode 10 2.3.3. Rock Mode 10 2.3.4. Slide-Rock Mode 11 CHAPTER 3: METHODOLOGY 13 3.1. Sloped Rolling-Type Isolator with Free-Standing Equipment 13 3.2. Structural Controller Design 14 3.2.1. Fuzzy Logic Control (FLC) 15 3.2.1.1. FLC with Optimized Output Membership Functions 16 3.2.1.2. FLC with Optimized Input and Output Membership Functions 16 3.2.2. Gain Scheduling Control (GSC) 16 3.2.3. Linear Control (LC) 17 3.3. Symbiotic Organisms Search 18 3.4. Performance Indices 20 CHAPTER 4: NUMERICAL STUDIES 23 4.1. Modeling of Sloped Rolling-Type Isolator 23 4.2. Slide, Rock, and Slide-Rock Modes 23 4.2.1. Slide Mode 23 4.2.2. Rock Mode 24 4.2.3. Slide-Rock Mode 25 4.3. Active Control Performance 26 4.3.1. Fuzzy Logic Control (FLC) 26 4.3.1.1. FLC with Optimized Output Membership Functions 26 4.3.1.2. FLC with Optimized Input and Output Membership Functions 27 4.3.2. Gain Scheduling Control (GSC) 27 4.3.3. Linear Control (LC) 27 CHAPTER 5: EXPERIMENTAL STUDIES 29 5.1. Experimental Setup 29 5.1.1. Sloped Rolling-Type Isolator Model 29 5.1.2. Hardware and Software 29 5.1.3. Instrumentation 30 5.2. Sloped Rolling-Type Isolator Response 31 5.3. Sloped Rolling-Type Isolator with Free-Standing Equipment 32 5.3.1. Slide Mode 32 5.3.2. Rock Mode 32 5.4. Sloped Rolling-Type Isolator with Active Base Control 33 5.4.1. PID Control for Tracking Displacement Command 33 5.4.2. System Identification for the Active Platen 33 5.4.3. FLC 2 as Active Control Algorithm 34 5.4.4. LC as Active Control Algorithm 35 CHAPTER 6: SUMMARY AND CONCLUSIONS 37 6.1. Summary 37 6.2. Conclusions 39 REFERENCES 43

    1. Hwang, J., et al., Applicability of seismic protective systems to structures with vibration-sensitive equipment. Journal of Structural Engineering, 2004. 130(11): p. 1676-1684.
    2. Nagarajaiah, S. and S. Xiaohong, Response of base-isolated USC hospital building in Northridge earthquake. Journal of structural engineering, 2000. 126(10): p. 1177-1186.
    3. Myslimaj, B., et al. Base isolation technologies for seismic protection of museum artifacts. in The 2003 IAMFA Annual Conference in San Francisco, California. 2003. IAMFA San Francisco, CA.
    4. Saaed, T.E., et al., A state-of-the-art review of structural control systems. Journal of Vibration and Control, 2015. 21(5): p. 919-937.
    5. Hamidi, M. and M. El Naggar, On the performance of SCF in seismic isolation of the interior equipment of buildings. Earthquake engineering & structural dynamics, 2007. 36(11): p. 1581-1604.
    6. Wang, S.J., et al., Sloped multi‐roller isolation devices for seismic protection of equipment and facilities. Earthquake Engineering & Structural Dynamics, 2014. 43(10): p. 1443-1461.
    7. Yang, Y.B., H.H. Hung, and M.-J. He, Sliding and rocking response of rigid blocks due to horizontal excitations. Structural engineering and mechanics: An international journal, 2000. 9(1): p. 1-16.
    8. Ishiyama, Y., Motions of rigid bodies and criteria for overturning by earthquake excitations. Earthquake Engineering & Structural Dynamics, 1982. 10(5): p. 635-650.
    9. Shenton III, H.W. and N.P. Jones, Base excitation of rigid bodies. I: Formulation. Journal of Engineering Mechanics, 1991. 117(10): p. 2286-2306.
    10. Shenton III, H.W. and N.P. Jones, Base excitation of rigid bodies. II: Periodic slide-rock response. Journal of engineering mechanics, 1991. 117(10): p. 2307-2328.
    11. Cheng, F.Y. and H. Jiang, Optimum control of a hybrid system for seismic excitations with state observer technique. Smart materials and structures, 1998. 7(5): p. 654.
    12. Chen, P.C. and S.J. Wang, Improved control performance of sloped rolling‐type isolation devices using embedded electromagnets. Structural Control and Health Monitoring, 2017. 24(1): p. e1853.
    13. Hsu, T.Y., P.S. Dai, and S.-J. Wang, Numerical study on smart sloped rolling-type seismic isolators integrated with early prediction of peak velocity. Engineering Structures, 2021. 246: p. 113032.
    14. Chen, P.C., et al., Real-time hybrid simulation of smart base-isolated raised floor systems for high-tech industry. Smart Structures and Systems, An International Journal, 2019. 23(1): p. 91-106.
    15. Soong, T. and B. Spencer Jr, Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering structures, 2002. 24(3): p. 243-259.
    16. Shenton III, H.W., Criteria for initiation of slide, rock, and slide-rock rigid-body modes. Journal of Engineering Mechanics, 1996. 122(7): p. 690-693.
    17. Kounadis, A.N., The effect of sliding on the rocking instability of multi-rigid block assemblies under ground motion. Soil Dynamics and Earthquake Engineering, 2018. 104: p. 1-14.
    18. Rugh, W.J. and J.S. Shamma, Research on gain scheduling. Automatica, 2000. 36(10): p. 1401-1425.
    19. Cheng, M.Y. and D. Prayogo, Symbiotic organisms search: a new metaheuristic optimization algorithm. Computers & Structures, 2014. 139: p. 98-112.
    20. Ozbulut, O.E. and S. Hurlebaus, Fuzzy control of piezoelectric friction dampers for seismic protection of smart base isolated buildings. Bulletin of Earthquake Engineering, 2010. 8(6): p. 1435-1455.

    無法下載圖示 全文公開日期 2026/01/30 (校內網路)
    全文公開日期 2026/01/30 (校外網路)
    全文公開日期 2026/01/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE