簡易檢索 / 詳目顯示

研究生: 王琮賢
Tsung-Hsien Wang
論文名稱: 線路用避雷器於塔腳電阻變化之可行性研究
Feasibility Study of Line Arresters on the Variation of Tower Resistance
指導教授: 張宏展
Hong-Chan, Chang
口試委員: 吳瑞南
Ruay-Nan, Wu
郭政謙
Cheng-Chien, Kuo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 80
中文關鍵詞: 電磁暫態線路避雷器逆閃烙
外文關鍵詞: Electro-Magnetic Transient, Line Arrester, Back-Flashover
相關次數: 點閱:266下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文旨在應用電磁暫態程式(EMTP),模擬高壓輸電系統遭受雷擊時之暫態響應,進而評估裝設線路避雷器之可行性。在研究的過程中,首先建立輸電鐵塔、輸電線、雷擊突波及線路避雷器模型。其次,藉由改變避雷器裝設方式、雷擊電流波形及峰值以評估其有效性,並提出閃烙餘裕度指標,進行成本-效益分析。再者,本研究亦針對各項線路參數的變化之影響,分別進行靈敏度分析。最後,針對各種塔腳電阻之變化情形,模擬分析其過電壓暫態情形。研究結果顯示,裝設線路避雷器確可增進系統可靠度。在各項線路參數中,雷擊電流的波形對模擬的結果影響最劇烈;而塔腳電阻值的升高,除使雷擊逆閃烙情況更加明顯外,影響的範圍亦會因而擴大。總之,裝設線路避雷器必須考慮其經濟性及有效性,其中模型參數、雷擊參數、塔腳電阻等各項因素與模擬結果習習相關,本研究已提出一套系統化雷擊暫態模擬之建議流程,可供線路避雷器裝設規劃之參考。


The main purpose of this thesis is to simulate the transient response in the transmission lines when lightning strikes on the high voltage transmission system by using the Electro-Magnetic Transients Program (EMTP). The feasibility of installing line arresters to reduce the damage caused by lightning strikes will also be conducted. In the processs of research, the components of the study system including transmission tower, transmission line, lightning surge, and line arrester are first modeled. Secondly, the effectiveness of the line arresters is assessed by considering different installation schemes and changing the crest values and waveforms of lightning currents. Furthermore, an index indicating the flashover margin is presented for cost-benefit analysis. Finally, the effects of varying the foot resistances of transmission tower on lightning flashover are examined thoroughly. Results obtained show that installing line arrester can enhance the reliability of system. Besides, among the experimental parameters, simulation results are most sensitive to the changes of the lightning current waveforms. Furthermore, the rise of tower resistance has adverse effect on the back flashover phenomenon, and hence expands the influenced region. In conclusion, the effectiveness and economy assessment of installing line arresters depends mainly on the model parameters, lightning parameters, and tower resistance, etc. The research has presented a systematic simulation procedure which can be adopted in the planning phase of installing line arresters.

中文摘要...............................I Abstract..............................II 誌 謝.................................i 目 次................................ii 圖目錄.................................v 表目錄...............................vii 第一章 緒論...........................1 1.1 研究背景與動機................1 1.2 研究方法與步驟................1 1.3 章節概要......................2 第二章 雷擊事故之成因與對策...........4 2.1 前言..........................4 2.2 落雷之形成....................4 2.2.1 雷電現象......................4 2.2.2 前導放電與回擊現象............6 2.2.3 多重雷擊現象..................7 2.2.4 雷擊電流函數..................8 2.3 塔腳電阻之變化...............12 2.4 雷擊對輸電線路之影響..........3 2.5 輸電線路之防雷對策...........14 2.6 本章結論.....................17 第三章 線路避雷器特性分析............18 3.1 前言.........................18 3.2 線路避雷器簡介...............18 3.3 避雷器規格及參數.............20 3.3.1 結構與設計...................20 3.3.2 相關名詞定義.................24 3.4 本章結論.....................28 第四章 南投-二水線之雷擊暫態模擬.....29 4.1 前言.........................29 4.2 系統架構分析.................29 4.3 模擬條件概述.................31 4.4 程式模擬流程.................33 4.5 線路等效模型建立.............34 4.5.1 雷擊源等效模型...............34 4.5.2 輸電線路等效模型.............36 4.5.3 鐵塔等效模型.................37 4.5.4 線路避雷器等效模型...........39 4.6 雷擊暫態特性模擬分析.........40 4.6.1 輸電鐵塔電壓驟升.............40 4.6.2 傳輸線上感應電壓.............41 4.7 雷擊電流峰值差異之模擬分析...42 4.8 餘裕度分析...................50 4.9 本章結論.....................51 第五章 系統參數設定之影響評估........53 5.1 前言.........................53 5.2 線路參數之差異比較...........53 5.2.1 模擬條件概述.................53 5.2.2 雷擊電流上升率之變動.........53 5.2.3 雷擊電流峰值之變動...........55 5.2.4 雷擊路徑突波阻抗值之變動.....56 5.2.5 鐵塔突波阻抗值之變動.........57 5.3 靈敏度分析...................58 5.3.1 雷擊電流上升率方面...........58 5.3.2 雷擊電流峰值方面.............59 5.3.3 雷擊路徑突波阻抗值方面.......59 5.3.4 鐵塔突波阻抗值方面...........60 5.3.5 綜合比較.....................61 5.4 雷擊點之差異比較.............61 5.5 本章結論.....................64 第六章 塔腳電阻變動之影響評估........65 6.1 前言.........................65 6.2 塔腳電阻異常之模擬分析.......65 6.3 塔腳電阻變動與碍子跨壓之關係.72 6.4 裝設線路避雷器之可行性評估...74 6.5 本章結論.....................76 第七章 結論..........................77 7.1 研究成果.....................77 7.2 未來展望與建議...............78 參考文獻..............................79

[1]陳以彥,江榮城,林建廷,「台灣雷擊分析特性統計分析」,中華民國第23屆電力工程研討會2002論文,第1269-1274頁。
[2]William C., Hart and Edgar W. Malone, ”Lightning and Lightning Protection,” 1979.
[3]張文英,「雷、防雷及避雷」,電機月刊,第一卷第三期,民國80年3月號,第89-96頁。
[4]Chen Yazhou, Liu Shanghe, Wu Xiaorong and Zhang Feizhou, “A New Kind of Lightning Channel-Base Current Function,” 3rd International Symposium on Electromagnetic Compatibility, 2002, May 21-24, pp.304-307.
[5]C E R Bruce and R H Golde, “The lightning discharge,” IEE, London, 1941, pp.487-520.
[6]F.Heidler, “Traveling Current Source Model for LEMP Calculation,” Proc.6th Int. Zurich Symp. Tech. Exhib. Electromagn. Compat, Zurich, 1985, pp.157-162.
[7]蔡水源,「輸電線路之雷對策與今後之課題」,電機月刊,第七卷第九期,民國86年,第199-203頁。
[8]IEEE Std 1243-1997, “IEEE Guide for Improving the Lightning Performance of Transmission Lines”.
[9]CIGRE Working Group 01 (Lightning) of Study ommittee 33 (Overvoltages and Insulation Coordination),”Guide to Procedures for Estimating the Lightning Performance of Transmission Lines,” CIGRE Brochure 63, Paris, Oct. 1991.
[10]Shuji Furukawa, Osamu Usuda, Takashi Isozaki, and Takashi Irie, “Development and Application of Lightning Arresters for Transmission Lines,” Power Delivery, IEEE Transactions on Vol.4, No.4, 1989, pp.2121-2129.
[11]中國電機工程學會,「中國電機工程師手冊:電力類」,第二卷第四章,民國82年,第12-204~12-205頁。
[12]IEEE Std C62.11-1993, “IEEE Standard for Metal-Oxide Surge Arresters for Alternating Current Power Circuits”.
[13]M. Ishii, T. Kawamura, T. Kouno, E. Ohsaki, K. Shiokawa, K. Murotani and T. Higuchi, “Multistory Transmission Tower Model for Lightning Surge Analysis,” Power Delivery, IEEE Transactions on Vol.6, July 1991, pp.1327-1335.
[14]Takamitsu Ito, Toshiaki Ueda, Hideto Watanabe, Toshihisa Funabashi and Akihiro Ametani, “Lightning Flashovers on 77-kV Systems: Observed Voltage Bias Effects and Analysis,” Power Delivery, IEEE Transactions on Vol.18, No.2, April 2003.
[15]M.E. Almeida and M.T. Correia de Barros, “Tower Modeling for Lightning Surge Analysis Using Electro-Magnetic Transient Program,” IEE Proc-Gener. Transmission Distribution, Vol.141, No.6 November 1994.
[16]T. Yamada, A. Mochizuki, J. Sawada, E. Zaima, T. Kawamura, A. Ametani, M. Ishi and S. Kato, “Experimental Evaluation of A UHV Tower Model for Lightning Surge Analysis,” Power Delivery, IEEE Transactions on Vol. 10, Jan. 1995, pp.393-402.
[17]張宏展、吳瑞南、蕭弘清,「輸電線路避雷器特性及經濟效益評估」,台灣電力公司委託研究計畫報告,國立台灣科技大學,2004。

QR CODE