簡易檢索 / 詳目顯示

研究生: 田佳輝
Chia-Hui Tien
論文名稱: 一個十六位元每秒一百萬次取樣之免校正連續漸進式類比數位轉換器設計與實現
Design and Implementation of a 16-bit 1-MS/s Calibration-Free SAR ADC
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳亮仁
Liang-Jen Chen
陳筱青
Hsiao-Chin Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 71
中文關鍵詞: 連續漸進式類比數位轉換器
外文關鍵詞: SAR ADC
相關次數: 點閱:310下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

對於十六位元連續漸進式類比數位轉換器(SAR ADC)來說,雜訊與線性度是晶片實現的兩個主要難題。雜訊部分由於缺乏超取樣(Oversampling)與雜訊整形(Noise-shaping)等機制,主要是藉由電路設計技巧來滿足雜訊的規格。在線性度方面,主要是受到電容不匹配的影響。在本論文中,使用兩種技術來改善線性度:一是二階電容交換技術,另一是快速二元視窗切換技術。二階電容交換技術是將前兩次切換所使用的電容,利用交換機制將失真轉變成雜訊,以得到更好的無雜散動態範圍(SFDR)。快速二元視窗切換技術則是改變傳統連續漸進式類比數位轉換器的電容切換方式,藉由減少不必要的電容切換來改善訊號對雜訊與失真比(SNDR)。
在台積電的0.18微米CMOS製程之下,實現了一個十六位元,每秒一百萬次取樣之免校正連續漸進式類比數位轉換器,晶片面積為0.52 平方毫米。在1.8伏特的操作電壓之下,消耗的功率是1.54毫瓦。當使用一千赫茲的弦波作為輸入訊號時,量測到的微分非線性誤差(DNL)為-0.7/1.3 LSB,積分非線性誤差(INL)為-3.1/3.3 LSB。量測到的訊號對雜訊與失真比是76.3dB,無雜散動態範圍是102dB,性能指標(FOMS)是161.4 dB。


For 16-bit successive approximation register (SAR) analog-to-digital converters (ADCs), noise and linearity are two major challenges for chip implementation. In this work, without the oversampling and noise-shaping techniques, I use several circuit design skills to meet the noise specification. For the linearity, it’s mainly affected by the capacitor mismatch. In this thesis, two techniques are presented to improve the ADC linearity. One is the level-two capacitor-swapping technique, and the other is the fast-binary-window DAC switching scheme. For the first two MSB capacitor switching, the level-two capacitor-swapping utilizes the swapping mechanism to transform the distortion into noise for better SFDR. The fast-binary-window DAC switching technique changes the SAR ADC’s conventional switching method to improve SNDR by reducing unnecessary capacitor switching.
A 16-bit 1-MS/s calibration-free SAR ADC was implemented in TSMC 0.18μm CMOS. This ADC chip occupies die area of 0.52 mm2. It consumes 1.54 mW from a 1.8V supply. At a 1-kHz input frequency, the measured DNL is -0.7/1.3 LSB. The measured INL is -3.1/3.3 LSB. The measured SNDR and SFDR are 76.3 dB and 102 dB, respectively. This leads to a Schreier FOM of 161.4 dB.

摘 要 I Abstract II 誌 謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 導論 1 1-1 研究動機 1 1-2 論文架構 3 第二章 已知的高解析度ADC技術 4 2-1 電容校正技術 4 2-1-1 分離式(Split) SAR ADC校正技術 4 2-1-2 使用三角積分調變器之電容校正技術 7 2-1-3 管線-連續漸進式(Pipelined-SAR)線性校正技術 9 2-1-4 使用最小有效位元(LSB)電容校正技術 10 2-1-5 信號獨立背景式校正技術 11 2-1-6 電容校正技術之結論 14 2-2 雜訊改善技術 15 2-2-1 最小有效位元重複技術 15 2-2-2 數位斜率式(Digital-Slope)技術 16 第三章 電容交換與快速二元視窗切換技術 19 3-1 電容不匹配 19 3-2 電容交換技術 21 3-3 快速二元視窗切換技術 24 第四章 一個十六位元每秒一百萬次取樣之免校正連續漸進式類比數位轉換器 26 4-1 架構 26 4-2 取樣保持電路 30 4-3 比較器 32 4-4 數位類比轉換器 35 4-5 連續漸進式控制邏輯電路 40 4-6 雜訊分析 41 4-7 佈局考量 42 4-7-1 電容陣列佈局 43 4-8 模擬結果 45 4-9 量測結果 47 4-9-1 動態性能 49 4-9-2 靜態性能 51 4-9-3 分析與總結 53 第五章 結論與未來展望 55 5-1 結論 55 5-2 未來展望 56 參考文獻 57

[1]J. A. McNeill, et al., "All-Digital Background Calibration of a Successive Approximation ADC Using the “Split ADC” Architecture," IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 58, no. 10, pp. 2355-2365, Oct. 2011.
[2]Y. Chi and D. Li, "A 1.8 V 1.1 MS/s 96.1 dB-SFDR successive approximation register analog-to-digital converter with calibration," in Journal of Semiconductors, vol. 34, no. 4, pp. 1-7, Apr. 2013.
[3]A. Bannon, et al., "An 18 b 5 MS/s SAR ADC with 100.2 dB Dynamic Range," in VLSI Symp. on Circuits, June 2014, pp. 1-2.
[4]J. Shen, et al., “A 16-bit 16-MS/s SAR ADC With On-Chip Calibration in 55-nm CMOS,” IEEE J. Solid-State Circuits, vol. PP, no. 99, pp. 1-12, Jan. 2018.
[5]H. Li, et al., “Signal-Independent Background-Calibrating 20b 1MS/s SAR ADC with 0.3ppm INL,” in Proc. of IEEE ISSCC, Feb. 2018, pp. 242-243.
[6]C.-C. Liu, et al., "A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC," in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016.
[7]D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York, NY, USA: Wiley, 1997, ch. 13, sec. 1, pp. 487–489.
[8]Y.-H. Chung, M.-H. Wu, and H.-S. Li, “A 12-bit 8.47-fJ/conversion-Step Capacitor-Swapping SAR ADC in 110-nm CMOS,” IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 10-18, Jan. 2015.
[9]Y.-H. Chung, C.-W. Yen, P.-K. Tsai, and B.-W. Chen, “A 12-bit 40-MS/s SAR ADC With a Fast-Binary-Window DAC Switching Scheme, ”IEEE Transactions on Very Large Scale Integration (VLSI) Systems, pp. 1-10, July 2018.
[10]B.-S. Song et al., “A 1 V 6 b 50 MHz current-interpolating CMOS ADC,” in Symp. VLSI Circuits, 1999, pp. 79-80.
[11]M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, “A low-noise self- calibrating dynamic comparator for high-speed ADCs,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC), Nov. 2008, pp. 269–272.
[12]C. C. Liu, S. J. Chang, G. Y. Huang, Y. Z. Lin, C. M. Huang, C. H. Huang, L. Bu, and C. C. Tsai, “A 10 b 100 MS/s 1.13 mW SAR ADC with binary-scaled error compensation,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2010, pp. 386–387.
[13]Y. Zhu, C. Chan, S. Sin, S. U, R. Martins, and F. Maloberti, “A 10-bit 100M-S/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, no. 6, pp. 1111–1121, Jun. 2010.
[14]C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Y.-Z. Lin, “A 10-bit 50 MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731–740, Apr. 2010.
[15]S.-W. M. Chen and R. W. Brodersen, “A 6-bit 600 MS/s 5.3 mW asynchronous ADC in 0.13- μ m CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[16]M. Dessouky and A. Kaiser, “Very Low-Voltage Digital-Audio Σ∆ Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 349–355, Mar. 2001.
[17]A. H. T. Chang, “Low-Power High-Performance SAR ADC With Redundancy and Digital Background Calibration,” Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2013.
[18]M. Maddox, B. Chen, M. Coln, R. Kapusta, J. Shen, and L. Fernando, “A 16 bit linear passive-charge-sharing SAR ADC in 55 nm CMOS,” in IEEE Asian Solid-State Circuits Conf. (A-SSCC) Tech. Papers, Nov. 2016, pp. 153–156.

QR CODE