簡易檢索 / 詳目顯示

研究生: 楊中誌
Chung-chih Yang
論文名稱: 小型風力發電用之蓄電池儲能系統研製
Development of Battery Energy Storage Systems for Small Wind Power Generation
指導教授: 黃仲欽
Jonq-chin Hwang
口試委員: 葉勝年
Sheng-nian Yeh
呂錦山
Ching-shan Leu
王順源
Shun-yuan Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 110
中文關鍵詞: 永磁式同步發電機風力發電雙向功率轉換器
外文關鍵詞: permanent-magnet synchronous generator, wind power generation, bi-directional converter
相關次數: 點閱:238下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本文旨在研製小型風力發電用之儲能系統。本系統可將三相永磁式同步發電機所產生之變動電壓及頻率的交流電壓轉換為固定電壓及頻率之單相電源,並藉蓄電池儲能系統負責能量儲存與功率補償,以彌補風能不穩定之特性。本文之系統採用低成本,且容易實現之三相全橋式二極體整流器作為發電機側電路之主架構,並加入三相Y接與各相獨立接法切換技術提高風能使用率,低速時採三相Y接線的三臂型二極體整流器,高速時採各相獨立繞組之六臂型二極體整流器,以維持穩定直流匯流排電壓。市電側採用單相直流-交流功率轉換器,將發電機及蓄電池之功率轉換為電能,提供負載使用或與市電併聯。最後,能源管理部分,使用降壓/昇壓型直流-直流功率轉換器作為蓄電池儲能與釋能之控制,完成系統平衡。
  本文以高性能的數位信號處理器TMS320F28335為整體系統之控制核心,其控制策略皆由軟體程式完成,不但減少硬體電路元件及成本,並增加系統運作可靠度。本文完成在三臂及六臂型二極體整流於獨立運轉模式下,對單相負載輸出交流60Hz、110V之定電壓,輸出功率為300W;在市電併聯模式下系統供給333W,其效率為90%。實驗結果驗證本文之理論分析及控制法則的可行性。


  This thesis presents the analysis and design of battery energy storage systems for small wind power generation. The system can transfer the three-phase permanent-magnet synchronous generator from varying-voltage and varying-frequency to 60 Hz single-phase source, and the battery is used for energy storage and power compensation to compensate the natural irregularity of the wind power. The system uses three-phase full-bridge rectifier, which is low-cost and realized easily, to become the generator side power converter, to generate electric power over a wide range of wind condition along with wye-connected winding or independent winding. When the wind speed is low, the ac-dc power converter uses three-leg rectifier structure to raise the dc-link voltage. Whereas, when the wind speed is high, the ac-dc power converter uses six-leg rectifier structure converter to keep dc-bus voltage lying within the constant range. The proposed single-phase inverter can not only provide the power of the generator and the battery but also operate in either stand-alone or grid-connected fashion. Finally, a buck-boost dc-dc power converter is designed to charge and discharge batteries in order to regulate the power flow between renewable energy and system loads.
  A high-performance digital signal processor TMS320F28335 is used to implement the control function to control the power converters. An experimental system is built. The system can provide single-phase ac 110V to single-phase load under stand-alone operation. The output of the effective power is 300W. Under grid-connected mode, the power converter supplies 330W with the corresponding efficiency of 90% using the topologies of three-leg and six-leg rectifier structures. Finally, experimental results are given to justify the analysis.

中文摘要 I 英文摘要 II 誌 謝 III 目 錄 IV 符號索引 VII 圖表索引 XI 第一章、緒論 1 1.1 研究動機及目的 1 1.2 文獻之探討 1 1.3 系統架構及本文特色 6 1.4 本文大綱 7 第二章、三相永磁式同步發電機及二極體整流電路 10 2.1 前言 10 2.2 三相永磁式同步發電機及其數學模式 10 2.3 三相永磁式同步發電機之量測 12 2.4 三相全橋二極體整流器 15 2.5 結語 20 第三章、單相直流-交流功率轉換器之控制 21 3.1 前言 21 3.2 單相直流-交流功率轉換器 21 3.3 單相電壓角位置偵測及市電併聯控制 24 3.4 單相獨立運轉控制 30 3.5 單相直流-交流功率轉換器之實測結果 32 3.6 結語 37 第四章、蓄電池能量管理及系統整合 38 4.1 前言 38 4.2 蓄電池特性分析及充電方式 38 4.2.1 鉛酸電池特性分析 36 4.2.2 常用之充電方式 39 4.3 蓄電池充放電系統架構及控制 41 4.3.1 直流-直流功率轉換器之直流電壓閉迴路控制策略 47 4.3.2 直流-直流功率轉換器之功率控制模式控制策略 48 4.4 具雙向功能直流-直流功率轉換器之實測結果 49 4.5 系統整合及能源管理 57 4.5.1 單相獨立運轉操作模式 57 4.5.2 單相市電併聯操作模式 59 4.6 結語 60 第五章、實體製作與實測 61 5.1 前言 61 5.2 數位信號處理器及介面電路 61 5.3 發電機轉速偵測技術 65 5.4 控制軟體規劃 66 5.4.1 系統主程式規劃 66 5.4.2 發電機轉速偵測副程式規劃 68 5.4.3 單相電壓角位置之鎖相迴路副程式規劃 70 5.4.4 直流-交流功率轉換器之副程式規劃 72 5.4.5 蓄電池充放電系統之副程式規劃 76 5.5 系統實測 80 5.6 結語 99 第六章、結論與未來研究方向 101 6.1 結論 101 6.2 未來研究方向 102 參考文獻 103 附錄A 三相永磁式同步發電機之規格 107 附錄B 系統規格 109 作者簡介 110

參考文獻
[1] http://www.awea.org,美國風能協會。
[2] 張希良著,風力發電技術,新文京開發出版股份有限公司,民國96年。
[3] A. B. Raju, K. Chatterjee and B. G. Fernandes, “A simple maximum power point tracker for grid connceted variable speed wind energy conversion system with reduced switch count power converter,” IEEE Power Electronics Specialist Conference, vol. 2, pp. 748-753, 2003.
[4] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Transactions on Industry Electronics, vol. 53, pp. 486-494, 2006.
[5] S. J. Park, B. B. Kang, J. P. Yoon, I. S. Cha, and J. Y. Lim, “A study on the stand-alone operating or photovoltaic/wind power hybrid generation system,” IEEE Power Electronics Specialist Conference, vo1. 3, pp. 2095-2099, 2004.
[6] M. Ciobotaru, R. Teodorescu, and V. G. Agelidis, “Offset rejection for PLL based synchronization in grid-connected converters,” IEEE Power Electronics Specialist Conference, pp. 754-759, 2008.
[7] B. M. Nagai, K. Ameku and J. N. Roy, “Performance of a 3 kW wind turbine generator with variable pitch control system,” Applied Energy, vol. 86, no. 9, pp. 1774-1782, 2009.
[8] G. Mller, M. F. Jentsch and E. Stoddart, “Vertical axis resistance type wind turbines for use in buildings,” Renewable Energy, vol. 34, no. 5, pp. 1407-1412, 2009.
[9] T. M. H. Nicky, K. Tan and S. Islam, “Mitigation of harmonics in wind turbine driven variable speed permanent magnet synchronous enerators,” The 7th International Power Engineering Conference, pp. 1159-1164, 2005.
[10] J. Azzouzi, G. Barakat and B. Dakyo, “Analytical modeling of an axial flux permanent magnet synchronous generator for wind energy application,” IEEE International Conference on Electric Machines and Drives, pp. 1255-1260, 2005.
[11] H. Li and Z. Chen, “Design optimization and site matching of direct- drive permanent magnet wind power generator systems,” Renewable Energy, vol. 34, no. 4, pp. 1175-1184, 2009.
[12] F. Wang, J. Bai, Q. Hou and J. Pan, “Design features of low speed permanent magnet generator direct driven by wind turbine,” Proceedings of the Eighth International Conference on Electrical Machines and Systems, vol. 2, pp. 1017-1020, 2005.
[13] 蕭鈞毓,“六相及雙三相繞組永磁式同步電機之分析及設計”,國立台灣科技大 學電機研究所碩士論文,民國九十七年。
[14] J. A. M. Bleijs, “Continuous conduction mode operation of three- phase diode bridge rectifier with constant load voltage,” IEEE Power Electronics Specialist Conference, vol. 152, issue. 2, pp. 359-368, 2005.
[15] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch, three-phase, high-power-factor rectifiers,” IEEE Transactions on Industry Applications, vol. 34, no. 6, pp. 1327-1334, 1998.
[16] J. Kikuchi, M. D. Manjrekar and T. A. Lipo, “Complementary half controlled three phase PWM boost rectifier for multi-DC-link applications,” IEEE Applied Power Electronics Conference and Exposition, vol. 1, pp. 494-500, 2000.
[17] J. Kikuchi, M. D. Manjrekar and T. A. Lipo, “Performance improvement of half controlled three phase PWM boost rectifier,” IEEE Power Electronics Specialists Conference, vol. 1, pp. 319-324, 1999.
[18] 林君達,“低噪音風能轉換系統用永磁式同步發電機之設計及控制”,國立台灣 科技大學電機工程研究所碩士論文,民國九十八年。
[19] 賴孟修,“小型風力發電系統之功率轉換器研製”,國立台灣科技大學電機工程 研究所碩士論文,民國一百年。
[20] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “New single-phase PLL structure based on second order generalized Integrator,” IEEE Power Electronics Specialists Conference, pp. 1-6, 2006.
[21] M. Z. Gao, B. H. Li, M. Chen,W. Yao and Z. M. Qian, “Analysis and implementation of a PLL structure for single-phase grid-connected inverter system,” IEEE 6th International Power Electronics and Motion Control Conference, pp. 716 – 719, 2009.
[22] A. Nicastri and A. Nagliero, “Comparison and evaluation of the PLL techniques for the design of the grid-connected inverter systems,” IEEE International Symposium on Industrial Electronics, pp. 3865– 3870 , 2010.
[23] 張銘,“單相換流器市電併網控制系統”,國立台灣科技大學電機研究所碩士 論文,民國九十八年。
[24] U. A. Miranda, M. Aredes and L. G. B. Rolim, “A dq synchronous reference frame current control for single-phase converters,” IEEE Power Electronics Specialists Conference, pp. 1377-1381, 2005.
[25] A. Hasanzadeh, O. C. Onar, H. Mokhtari and A. Khaligh, “A proportional- resonant controller-based wireless control strategy with a reduced number of sensors for parallel-operated UPSs,” IEEE Transactions on Power Delivery, vol. 25, pp. 468-478, 2010.
[26] K. Wang, C. Y. Lin, L. Zhu, D. Qu, F. C. Lee, and J. S. Lai, “Bi- directional DC to DC converters for fuel cell systems,” IEEE Power Electronics in Transportation, pp. 47-51, 1998.
[27] K. Wang, F. C. Lee, and J. Lai, “Operation principles of bi- directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,” IEEE Applied Power Electronics Conference and Exposition, pp. 111-118, 2000.
[28] M. Jain, M. Daniele, and P. K. Jain, “A bi-directional DC-DC converter topology for low power application,” IEEE Transactions on Power Electronics, vol. 15, no. 4, pp. 595-606, 2000.
[29] CSB Battery Technologies,小型密閉式鉛酸蓄電池技術手冊, http://www.csb-battery.com/chine/03_support/01_support.php, 2007.
[30] “Smart power module motion-SPM in mini DIP SPM ver.4 user’s guide,” Fairchild Semiconductor .Inc, 2008.
[31] “TMS320F28335, enhanced pulse width modulator(ePWM) module,” Texas Instruments .Inc, 2007.
[32] “TMS320F28335, digital signal controllers data manual,” Texas Instruments .Inc, 2007.
[33] “TMS320x2833x, analog-to-digital converter(ADC) module,” Texas Instruments .Inc, 2007.
[34] 何昆哲,“以數位訊號處理器為基礎之小型風力發電系統研製”,國立台灣科技 大學電機研究所碩士論文,民國九十六年。
[35] 蘇長成,“風力發電系統之功率轉換器研製”,碩士論文,國立台灣科技大學電 機工程研究所碩士論文,民國九十七年。
[36] 黃崇哲,“小型風力發電系統之功率轉換器研製”,國立台灣科技大學電機工程 研究所碩士論文,民國九十八年。
[37] 蔡承倫,“以數位信號處理器為基礎之風力發電及照明系統之研製”,國立台灣 科技大學電機工程研究所碩士論文,民國九十九年。
[38] 張沛鳴,“以數位信號處理器為基礎之蓄電池儲能系統之研製”,國立台灣科技 大學電機工程研究所碩士論文,民國一百年。

QR CODE