簡易檢索 / 詳目顯示

研究生: 林宜品
Yi-Pin Lin
論文名稱: 甲醛分子於過渡金屬修飾及硼取代石墨烯表面催化反應之理論計算研究
Formaldehyde Decomposition on Boron Doped Graphene Decorated with Transition Metal Atoms –A First Principles Study
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 黃炳照
Bing-Joe Hwang
林志興
Jyh-Shing Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 82
中文關鍵詞: 甲醛石墨烯過渡金屬團簇第一原理
外文關鍵詞: Formaldehyde Decomposition, Boron Doped Graphene, Transition Metal Cluster, First Principles
相關次數: 點閱:198下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

空氣中對人體有害的物質例如: volatile organic compounds (VOCs)、氮氧化物(NOx)、一氧化碳(CO)、粉塵微粒(PM10)…等。2009年,國際癌症研究機構(IARC)認為甲醛會引起鼻咽癌和白血病,如何去除甲醛,是十分迫切並且有意義的議題。許多物理及化學方法被應用於去除空氣中的甲醛,常見的方法有活性碳吸附(AC),光催化劑氧化 (PCO)以及催化劑氧化.
在這篇論文中,使用密度泛函理論(DFT) 模擬不同過渡金屬(釩,鈷,鎳) 吸附在含硼石墨烯上的穩定催化劑結構,再進行甲醛在此催化劑上乾淨或含氧表面吸附、分解或轉換成CH4 或CH3OH 等分子的計算。
甲醛吸附在V4, Co4, Ni4表面上,最穩定結構的吸附能分別為-3.51,-2.29,-1.82 eV,首先我使用態密度(Density of states) 以及電荷密度差分析,探討甲醛吸附前後電子性質的變化。接著進行甲醛在表面上斷C-H 、C-O 鍵的計算,發現甲醛分解的主要路徑是經由連續脫氫後生成CO,再將CO氧化成CO2 脫附。另外,我亦模擬甲醛轉換成甲醇與甲烷的反應。在V4 和Ni4表面C-O鍵仍然是可能斷裂並且產生CH2 吸附在表面上,接著在Ni4表面有利於CH2被氫化生成CH4 。而甲醇生成則是在含氧的表面下氫化甲醛有較低的能障。


Nowadays controlling indoor air quality is attracting immense research attention since humans are spending more time in the indoor activities. Formaldehyde (HCHO) is the most common highly toxic volatile carcinogen, which is found in many households and offices. The International Agency for Research on Cancer (IARC) concluded in 2009 that longtime exposure to HCHO causes nasal tumors, nasopharyngeal cancer and leukaemia. Etc. In order to clean the indoor air, many strategies have been proposed to remove HCHO. However, catalytic oxidative decomposition of HCHO is considered the most promising approach for removal of indoor HCHO, because of its environmental friendliness.
In this work, with the aid of density functional (DFT) calculations, I have investigated the possible decomposition pathways of HCHO on the metal clusters (V, Co, Ni) supported boron-doped graphene surface. Also, I considered the presence of oxygen on the above decomposition reactions. The results show that, the dehydrogenation reactions of HCHO on the metal clusters are possible and possesses lower energy barrier. However, the energy for the desorption of CO and CO2 are found to be significantly large. Moreover, the formation of CH4 or CH3OH as side reactions at room temperature indicates yet another potential application of the designed systems.

Abstract 摘要 致謝 CONTENTES INDEX OF FIGURES INDEX OF TABLE Chapter 1 Introduction 1.1 Characteristics of Formaldehyde 1.2 Hazards of formaldehyde 1.3 Sources of Formaldehyde 1.4 Possible ways to remove Formaldehyde 1.4. 1 Metal surface catalyst 1.4. 2 Metal-supported catalyst 1.4. 3 Carbon-based catalyst 1.5 Aim of the Present Study Chapter 2 Computational Details 2. 1 Boron doped graphene Surface Chapter 3 RESULTS AND DISCUSSION 3. 1 Metal Cluster Decorated Boron Doped Graphene 3. 2 Formaldehyde Adsorption 3. 3 Reaction Mechanism Chapter 4 CONCLUSION Reference

1.ORGANIZATION WH. Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol. In. Edited by CANCER IAFRO; 2009.
2.Pala M, Ugolini D, Ceppi M, Rizzo F, Maiorana L, Bolognesi C, et al. Occupational exposure to formaldehyde and biological monitoring of Research Institute workers. Cancer Detect Prev 2008,32:121-126.
3.Conaway CC, Whysner J, Verna LK, Williams GM. Formaldehyde Mechanistic Data and Risk Assessment: Endogenoud Protection From DNA Adduct Formation. Pharmacol. Ther. 1996,71:29-55.
4.Franks SJ. A mathematical model for the absorption and metabolism of formaldehyde vapour by humans. Toxicol. Appl. Pharmacol. 2005,206:309-320.
5.Sources of Formaldehyde Gas in Your Home, Health Effects, and How to Test for and Control It. In.
6.Quiroz Torres J, Royer S, Bellat JP, Giraudon JM, Lamonier JF. Formaldehyde: catalytic oxidation as a promising soft way of elimination. ChemSusChem 2013,6:578-592.
7.萊陽子西萊環保股份有限公司. In.
8.Sirijaraensre J, Limtrakul J. Modification of the catalytic properties of the Au4 nanocluster for the conversion of methane-to-methanol: synergistic effects of metallic adatoms and a defective graphene support. Phys. Chem. Chem. Phys. 2015,17:9706-9715.
9.Bo J-Y, Zhang S, Lim KH. Steam Reforming of Formaldehyde on Cu(100) Surface: A Density Functional Study. Catal. Lett. 2009,129:444-448.
10.Wang H, He C-z, Huai L-y, Liu J-y. Formaldehyde Decomposition and Coupling on V(100): A First-Principles Study. J. Phys. Chem. C 2012,116:10639-10648.
11.Yamada T, Phelps DK, van Duin AC. First principle and ReaxFF molecular dynamics investigations of formaldehyde dissociation on Fe(100) surface. J Comput Chem. 2013,34:1982-1996.
12.Montoya A, Haynes BS. DFT Analysis of the Reaction Paths of Formaldehyde Decomposition on Silver. J. Phys. Chem. A 2009,113:8125-8131.
13.Luo W, Asthagiri A. Density Functional Theory Study of Methanol Steam Reforming on Co(0001) and Co(111) Surfaces. J. Phys. Chem. C 2014,118:15274-15285.
14.Zhang Q, Han B, Tang X, Heier K, Li JX, Hoffman J, et al. On the Mechanisms of Carbon Formation Reaction on Ni(111) Surface. J. Phys. Chem. C 2012,116:16522-16531.
15.Desai SK, Neurock M, Kourtakis K. A Periodic Density Functional Theory Study of the Dehydrogenation of Methanol over Pt(111). J. Phys. Chem. B 2002,106:2559-2568.
16.Kang GJ, Chen ZX, Li Z. Theoretical studies of the interactions of ethylene and formaldehyde with gold clusters. J Chem Phys 2009,131:034710.
17.Huang H, Leung DYC. Complete Oxidation of Formaldehyde at Room Temperature Using TiO2Supported Metallic Pd Nanoparticles. ACS Catalysis 2011,1:348-354.
18.Nie L, Yu J, Li X, Cheng B, Liu G, Jaroniec M. Enhanced performance of NaOH-modified Pt/TiO2 toward room temperature selective oxidation of formaldehyde. Environ Sci Technol. 2013,47:2777-2783.
19.Yu X, He J, Wang D, Hu Y, Tian H, He Z. Facile Controlled Synthesis of Pt/MnO2Nanostructured Catalysts and Their Catalytic Performance for Oxidative Decomposition of Formaldehyde. J. Phys. Chem. C 2012,116:851-860.
20.Nie L, Meng A, Yu J, Jaroniec M. Hierarchically macro-mesoporous Pt/gamma-Al2O3 composite microspheres for efficient formaldehyde oxidation at room temperature. Sci Rep 2013,3:3215.
21.Chen B-b, Zhu X-b, Crocker M, Wang Y, Shi C. Complete oxidation of formaldehyde at ambient temperature over γ-Al2O3 supported Au catalyst. Catal. Commun. 2013,42:93-97.
22.Huang H, Leung DYC. Complete elimination of indoor formaldehyde over supported Pt catalysts with extremely low Pt content at ambient temperature. J. Catal. 2011,280:60-67.
23.Lai X, Wang D, Han N, Du J, Li J, Xing C, et al. Ordered Arrays of Bead-Chain-like In2O3Nanorods and Their Enhanced Sensing Performance for Formaldehyde. Chem. Mater. 2010,22:3033-3042.
24.Chen B-B, Shi C, Crocker M, Wang Y, Zhu A-M. Catalytic removal of formaldehyde at room temperature over supported gold catalysts. Appl. Catal., B 2013,132-133:245-255.
25.Li H-F, Zhang N, Chen P, Luo M-F, Lu J-Q. High surface area Au/CeO2 catalysts for low temperature formaldehyde oxidation. Appl. Catal., B 2011,110:279-285.
26.Tang X, Chen J, Huang X, Xu Y, Shen W. Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Appl. Catal., B 2008,81:115-121.
27.Ma C, Wang D, Xue W, Dou B, Wang H, Hao Z. Investigation of Formaldehyde Oxidation over Co3O4−CeO2and Au/Co3O4−CeO2Catalysts at Room Temperature: Effective Removal and Determination of Reaction Mechanism. Environ. Sci. Technol. 2011,45:3628-3634.
28.An N, Zhang W, Yuan X, Pan B, Liu G, Jia M, et al. Catalytic oxidation of formaldehyde over different silica supported platinum catalysts. Chem. Eng. J. 2013,215-216:1-6.
29.Peng J, Wang S. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Appl. Catal., B 2007,73:282-291.
30.Zhang C, He H, Tanaka K-i. Perfect catalytic oxidation of formaldehyde over a Pt/TiO2 catalyst at room temperature. Catal. Commun. 2005,6:211-214.
31.Zhang C, He H, Tanaka K-i. Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Appl. Catal., B 2006,65:37-43.
32.Zhang C, He H. A comparative study of TiO2 supported noble metal catalysts for the oxidation of formaldehyde at room temperature. Catal. Today 2007,126:345-350.
33.Ao CH, Lee SC. Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 2005,60:103-109.
34.Xu Z, Yu J, Jaroniec M. Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Appl. Catal., B 2015,163:306-312.
35.Zhang YH, Chen YB, Zhou KG, Liu CH, Zeng J, Zhang HL, et al. Improving gas sensing properties of graphene by introducing dopants and defects: a first-principles study. Nanotech 2009,20:185504.
36.Kong J, Franklin NR, Franklin NR, Chapline MG, Peng S, Cho K, et al. Nanotube Molecular Wires as Chemical Sensors. Sci. 2000,287:622-625.
37.Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M. Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano Lett. 2003,3:929-933.
38.Collins PG. Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes. Sci. 2000,287:1801-1804.
39.Goldoni A, Larciprete R, Petaccia L, Lizzit S. Single-Wall Carbon Nanotube Interaction with Gases: Sample Contaminants and Environmental Monitoring. J. Am. Chem. Soc. 2003,125:11329-11333.
40.Wang H, Wang Q, Cheng Y, Li K, Yao Y, Zhang Q, et al. Doping monolayer graphene with single atom substitutions. Nano Lett 2012,12:141-144.
41.Li Y, Zhou Z, Yu G, Chen W, Chen Z. CO Catalytic Oxidation on Iron-Embedded Graphene: Computational Quest for Low-Cost Nanocatalysts. J. Phys. Chem. C 2010,114:6250-6254.
42.Zhao Y, Kim Y-H, Dillon AC, Heben MJ, Zhang SB. Hydrogen Storage in Novel Organometallic Buckyballs. Phys. Rev. Lett. 2005,94.
43.Yildirim T, Ciraci S. Titanium-Decorated Carbon Nanotubes as a Potential High-Capacity Hydrogen Storage Medium. Phys. Rev. Lett. 2005,94.
44.Lee H, Choi WI, Ihm J. Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based on Polymers. Phys. Rev. Lett. 2006,97.
45.Park N, Hong S, Kim G, Jhi S-H. Computational Study of Hydrogen Storage Characteristics of Covalent-Bonded Graphenes. J. Am. Chem. Soc. 2007,129:8999-9003.
46.Kim G, Jhi S-H, Park N, Louie S, Cohen M. Optimization of metal dispersion in doped graphitic materials for hydrogen storage. Phys. Rev. B 2008,78.
47.Sun Q, Wang Q, Jena P, Kawazoe Y. Clustering of Ti on a C60 Surface and Its Effect on Hydrogen Storage. J. Am. Chem. Soc. 2005,127.
48.Li S, Jena P. Comment on “Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based on Polymers”. Phys. Rev. Lett. 2006,97.
49.Chan KT, Neaton JB, Cohen ML. First-principles study of metal adatom adsorption on graphene. Phys. Rev. B 2008,77.
50.Liu H, Liu Y, Zhu D. Chemical doping of graphene. J. Mater. Chem. 2011,21:3335-3345.
51.Sheng Z-H, Gao H-L, Bao W-J, Wang F-B, Xia X-H. Synthesis of boron doped graphene for oxygen reduction reaction in fuel cells. J. Mater. Chem. 2012,22:390-395.
52.Wang S, Zhang L, Xia Z, Roy A, Chang DW, Baek JB, et al. BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2012,51:4209-4212.
53.Yang S, Zhi L, Tang K, Feng X, Maier J, Müllen K. Efficient Synthesis of Heteroatom (N or S)-Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions. Adv. Funct. Mater. 2012,22:3634-3640.
54.Jeon IY, Zhang S, Zhang L, Choi HJ, Seo JM, Xia Z, et al. Edge-selectively sulfurized graphene nanoplatelets as efficient metal-free electrocatalysts for oxygen reduction reaction: the electron spin effect. Adv Mater 2013,25:6138-6145.
55.Grimsditch M, Polian A, Wright AC. Irreversible structural changes in vitreous B2O3 under pressure. Phys. Rev. B 1996,54:152-155.
56.Caretti I, Gago R, Albella J, Jiménez I. Boron carbides formed by coevaporation of B and C atoms: Vapor reactivity, BxC1−x composition, and bonding structure. Phys. Rev. B 2008,77.
57.Naeini JG, Naeini JG, J. R. Dahn, Irwin JC. Raman scattering from boron-substituted carbon films. Phys. Rev. B 1996,54:144-151.
58.Goel S, Masunov AE. Density functional theory study of small nickel clusters. J Mol Model 2012,18:783-790.
59.Zou Y, Zhan C-Y, Wu J-C, Zhou L-P, Da H-X. Geometrical and magnetic properties of vanadium clusters supported on graphene. J. Korean Phys. Soc. 2013,63:225-228.
60.WTang, Sanville E, Henkelman G. A grid-based Bader analysis algorithm without lattice bias. J. Phys.: Condens. Matter 2009,21:1-7.

QR CODE