簡易檢索 / 詳目顯示

研究生: Jalma
Wolfgang - Xaverius Dorojatun Jalma Nuswantara
論文名稱: 基於交替方向乘子法之辭典學習研究
Dictionary Learning by Alternating Direction Method of Multipliers
指導教授: 張縱輝
Tsung-Hui Chang
口試委員: 鍾偉和
Wei-Ho Chung
林士駿
Shih-Chun Lin 
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 33
中文關鍵詞: 替方向乘子法辭典學習
外文關鍵詞: Dictionary learning, ADMM, Alternating Direction Method of Multipliers
相關次數: 點閱:189下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文應用交替方向乘子法(Alternating Direction of Multiplier Method)於辭典學習(Dictionary Learning)問題上。相較於預先設定的轉換方法,辭典學習為一種從訓練訊號中學習並產生一稀疏(sparse)之辭典的程序。現存解決辭典學習的方法為:(Method of Optimal Direction)及(K-SVD),然而這兩種方法都是計算複雜度即高的方法。而我們使用的交替方向乘子法將原本複雜的問題轉換成簡單的迭代步驟,使得計算複雜度降低,並能降低解決問題的計算時間。模擬結果證明了相較於現存的方法,我們提出的方法能夠成功地在沒有雜訊的環境下更快速且效率地訓練辭典並解決問題。


    This thesis investigates the application of the alternating direction method of multipliers (ADMM) to dictionary learning for noise removal problem.
    Dictionary learning (DL) is the process of acquiring dictionary that can yield sparse representation of desired signal by learning from training sig-nal, instead of using prespeci ed transformation basis. The prior arts of the dictionary learning algorithms include the method of optimal direction (MOD) and K-SVD. These methods have main drawback in computational complexity.By contrast, the ADMM, which we use to transform the complex problem, into simple update steps, yields lower computational complexity.
    We further proposed on inexact ADMM that can reduce the computational time, for scenarios with large dictionary size. Simulation results show that the proposed methods can successfully train the dictionary and yields promising performance for the image noise removal problem. In particular, the pro-posed ADMM method can be around 30 times faster than K-SVD, while inexact ADMM method can further reduce the computational time around 40 %.

    1 Introduction 1 2 Problem Formulation and Existing Method 4 2.1 Method of Optimal Direction (MOD) . . . . . . . . . . . . . 6 2.2 K-SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Proposed Strategies 11 3.1 ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Review of ADMM Method . . . . . . . . . . . . . . . . 11 3.1.2 DL by ADMM . . . . . . . . . . . . . . . . . . . . . . 13 3.2 Inexact ADMM DL . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.1 Review of Inexact ADMM . . . . . . . . . . . . . . . . 18 3.2.2 DL by Inexact ADMM . . . . . . . . . . . . . . . . . . 19 4 Simulation Results 23 4.1 ADMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Inexact Method . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 Conclusion and Future Works 30

    [1] M. Elad and M. Aharon, \Image denoising via sparse and redundant representa-
    tions over learned dictionaries," IEEE TRANSACTIONS ON IMAGE PROCESS-
    ING, VOL. 15, NO. 12, DECEMBER 2006, vol. 15, no. 12, december 2006.
    [2] R. Coifman and D. L. Donoho, \Translation invariant de-noising, in in wavelets and
    statistics, lecture notes in statistics," In Wavelets and Statistics, Lecture Notes in
    Statistics.., pp. 125{150, 1995.
    [3] M. Aharaon, \Overcomplete dictionaries for sparse representation of signals," PH.D
    Thesis, November 2006.
    [4] M. Elad, Sparse and Redundant Representations: From Theory to Applications in
    Signal and Image Processing. Springer, 2009.
    [5] S. Foucart and H. Rauhut, A Mathematical Introduiction to Compressed Sensing.
    Birkhauser, 2013.
    [6] S. G. Mallat and Z. Zhang, \Matching pursuits with time-frequency dictionaries,"
    IEEE Trans on Signal Processing, vol. 41, no. 12, pp. 3397 { 3415, December 1993.
    [7] E. J. Candes and T. Tao, \Decoding by linear programming," IEEE Trans on Infor-
    mation Theory, vol. 51, no. 12, pp. 4203 { 4215, Nov. 2005.
    [8] M. Aharon, M. Elad, and A. Bruckstein, \K-svd: An algorithm for designing overcom-
    plete dictionaries for sparse representation," IEEE TRANSACTIONS ON SIGNAL
    PROCESSING, vol. 54, no. 11, pp. 4311 { 4322, November 2006.
    [9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Echstein, Distributed Optimization and
    Statistical Learning via Alternating Direction Method of Multipliers. Foundations
    and Trends in Machine Learning, 2011.
    [10] T.-H. Chang, M. Hong, and X. Wang, \Multi-agent distributed optimization via
    inexact consensus admm," 2014.
    [11] Y. C. PATI, R. R. D, and P. s. KRISHNAPRASAD, \Orthogonal matching pur-
    suit: Recursive function approximat ion with applications to wavelet decomposition,"
    Confrence on Signals, Systems and Computers, 1993. 1993 Conference Record of The
    Twenty-Seventh Asilomar, vol. 1, pp. 40{44, November 1993.
    [12] H. Mohimani, M. Babaie-Zadeh, and C. Jutten, \Fast sparse representation based
    on smoothed l0 norm," Proceedings of 7th International Conference on Independent
    Component Analysis and Signal Separation, pp. 389{396, September 2007.
    [13] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W. Lee, and T. J. Se-
    jnowski, \Dictionary learning for sparse representation, neural computing," Neural
    Computing,2003, vol. 15, no. 2, pp. 394 {396, 2003.
    [14] S. Engan, K.and Aase and J. Hakon Husoy, \Method of optimal directions for frame
    design," IEEE International Conference on Acoustics, Speech, and Signal Processing,,
    1999.
    [15] R. Glowinski and A. Marroco, \Sur l'approximation, par elements nis d'ordre un,
    et la resolution, par penalisation-dualite d'une classe de problemes de dirichlet non
    lineaires," ESAIM: Mathematical Modelling and Numerical Analysis - Modelisation
    Mathematique et Analyse Numerique, vol. 9, no. R2, pp. 41{76, 1975.
    [16] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan, \A general analysis
    of the convergence of admm," International Conference on Machine Learning, 2015.
    [17] R. Chatrand, \A nonconvex admm algorithm for group sparsity with sparse groups,"
    IEEE International Confrence on Acoustics, Speech and Signal Processing, pp. 6009
    { 6013, May 28-31 2013.
    [18] D. L. S. . and C. Fevotte, \Alternating direction method of multipliers for non-
    negative matrix factorization with the beta-divergence," IEEE International Con-
    frence on Acoustics, Speech and Signal Processing, pp. 6201 { 6205.
    [19] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. I. Jordan, \A general analysis
    of the convergence of admm," arXiv:1502.02009v3, 2015.
    [20] A. Rakotomamonjy, \Applying alternating direction method of multipliers for con-
    strained dictionary learning," Neurocomputing, vol. 106, pp. 126{136, 2013.
    [21] J. M. Duarte-Carvajalino and G. Sapiro, \Learning to sense sparse signals: Simul-
    taneous sensing matrix and sparsifying dictionary optimization," IEEE TRANSAC-
    TIONS ON SIGNAL PROCESSING, vol. 14, no. 07, pp. 1{5, JULY 2009.
    [22] S. P. Kasiviswanathan, H. Wang, A. Banerjee, and P. Melville, \Online l1-dictionary
    learning with application to novel document detection," Advances in Neural Infor-
    mation Processing Systems, no. 25, 2012.
    33

    QR CODE