簡易檢索 / 詳目顯示

研究生: 錢俊達
Jiun-Da Chien
論文名稱: 高層建築外牆極值風壓之探討
Study of extreme wind pressures on external walls of a high-rise building
指導教授: 陳瑞華
Rwey-Hua Cherng
口試委員: 黃慶東
Ching-Tung Hung
鄭蘩
VAN JENG
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 163
中文關鍵詞: 極值風壓係數風洞試驗資料耐風規範
外文關鍵詞: extreme wind pressure coefficient, wind tunnel test data, wind design code
相關次數: 點閱:310下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究採用東京工藝大學風洞資料庫中1:1:5高樓層建築物風壓係數歷時,先利用沃羅若伊圖法(Voronoi)與面積加權平均決定出不同受風面積下的風壓係數歷時。接著分別採用Sadek&Simiu與Quan方法計算建築物各牆面下不同風向角的極值風壓係數;結果顯示風壓係數歷時之平均值、標準差、偏態及峰度程度皆對極值風壓係數有很大的影響,且極值風壓係數值之空間分佈與對應之標準差分佈有近似的趨勢。在不同風向角下對各牆面分別求取兩方法所得各測點極值風壓相對差距值之平均值,其值介於3.7%~16%,平均為7.5%,兩方法所得結果相近。由於Quan方法中需主觀判斷決定歷時分段個數,再作極值估計,而Sadek&Simiu方法為採用整段歷時作極值估計,故後續採用Sadek&Simiu方法所得結果與耐風規範外風壓係數值比較。當受風面積較小時,本研究計算所得之角隅處之正負極值風壓係數及中央區之正極值風壓係數大致與規範值相近,但隨著受風面積增加其值下降幅度較規範小;而中央區之負極值風壓係數在不同受風面積下均明顯大於規範值。


In this study, the wind pressure coefficient time histories for different tributary areas are determined by applying the Voronoi diagram and the area-weighted average method on the 1:1:5 high-rise building’s aerodynamic database of Tokyo Polytechnic University. Then Sadek & Simiu and Quan methods are used respectively to calculate the extreme wind pressure coefficients under various wind directions;the resulting extreme values are greatly influenced by the associated first four moments of the wind pressure coefficient time history;the spatial distribution of extreme wind pressures is quite similar to that of the associated standard deviations. The extreme wind pressure coefficients obtained by the two methods are similar with the average relative difference of 7.5%. Comparison between the results obtained by Sadek & Simiu method and the wind design code shows that when the tributary area is small, the positive and negative extreme wind pressures on the corner area and the positive extreme wind pressures on the central area are similar to those specified in the wind design code while as the tributary area increases, the values given by the code decreases much faster. However, the negative extreme pressures on the central area are significantly larger than those specified in the wind design code.

摘要 I Abstract III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XV 第一章 緒論 1 1.1研究動機與目的 1 1.2文獻回顧 1 1.3論文架構 4 第二章 風洞試驗資料庫與風基本特性 5 2.1風洞試驗資料庫介紹 5 2.2平均風速垂直分佈模式 7 2.2.1 風速與高度之關係 7 2.2.2指數律(Power Law) 7 2.2.3平均風速與高度及地表粗糙度關係 7 2.3基本縮尺考慮 8 2.4風洞試驗縮尺轉換 9 第三章 不同風向角風壓歷時係數特性 11 3.1風向角0度各牆面風壓係數特性 11 3.2風向角15度各牆面風壓係數特性 22 3.3風向角30度各牆面風壓係數特性 33 3.4風向角45度各牆面風壓係數特性 43 第四章 等效均佈極值風壓係數流程 55 4.1 風洞試驗資料庫之選擇 55 4.2 測點受風面積之決定 56 4.3 網格之規劃 57 4.4 等效均佈風壓歷時之決定 60 4.5 等效均佈極值風壓係數之估計 61 4.5.1 SAD 方法 61 4.5.2 Quan方法 62 4.6 Durst Curve之轉換 65 第五章 分析結果 67 5.1等效均佈極值風壓係數流程展現於C案例 67 5.1.1 SAD方法之極值估計 70 5.1.2 Quan方法之極值估計 79 5.2 SAD與Quan結果比較 88 5.3不同風向角下等效均佈極值風壓係數分佈探討 90 5.3.1風向角0度之等效均佈極值風壓係數分佈 90 5.3.3風向角30度之等效均佈極值風壓係數分佈 91 5.3.2風向角15度之等效均佈極值風壓係數分佈 92 5.3.4風向角45度之等效均佈極值風壓係數分佈 93 5.3.5統計特性討論 94 第六章 規範比較 101 6.1 有效受風面積之決定 101 6.2牆面外風壓區域之劃分 102 6.3 估計極值區域分佈 105 6.4 估計極值分佈與規範比較 114 第七章 結論與建議 119 7.1結論 119 7.2建議 120 參考文獻 121 附錄一 各測點不同案例下不同受風面積正負極値風壓係數列表 125

[1] Davenport, A. G. (1964). Note on the distribution of the largest value of a random function with application to gust loading. Proceedings of the Institution of Civil Engineers, 28(2), 187-196.
[2] Holmes, J. D. "Wind action on glass and Brown's integral." Engineering Structures 7.4 (1985): 226-230.
[3] Gioffrè, M., & Gusella, V. (2002). Damage accumulation in glass plates. Journal of engineering mechanics, 128(7), 801-805.
[4] Kareem, A., & Zhao, J. (1994). Analysis of non-Gaussian surge response of tension leg platforms under wind loads. Journal of Offshore Mechanics and Arctic Engineering, 116(3), 137-144.
[5] Grigoriu, M. (1995). Applied non-Gaussian processes: Examples, theory, simulation, linear random vibration, and MATLAB solutions. Prentice Hall.
[6] Winterstein, S. R., & Kashef, T. (2000). Moment-based load and response models with wind engineering applications. TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS JOURNAL OF SOLAR ENERGY ENGINEERING, 122(3), 122-128..
[7] Sadek, F., & Simiu, E. (2002). Peak non-Gaussian wind effects for database-assisted low-rise building design. Journal of Engineering Mechanics, 128(5), 530-539.
[8] Filliben, J. J. (1975). The probability plot correlation coefficient test for normality. Technometrics, 17(1), 111-117.
[9] Ge, Z. (2004). Analysis of surface pressure and velocity fluctuations in the flow over surface-mounted prisms (Doctoral dissertation).
[10] Tieleman, H. W., Elsayed, M. A., & Hajj, M. R. (2006). Peak wind load comparison: theoretical estimates and ASCE 7. Journal of Structural Engineering, 132(7), 1150-1157.
[11] Kasperski, M. (2000). Specification and codification of design wind loads (Doctoral dissertation, Ruhr-Universität Bochum, Fakultät für Bauingenieurwesen).
[12] Gumbel, E. J. (1954). Statistical theory of extreme values and some practical applications: a series of lectures (No. 33). US Govt. Print. Office.
[13] Cook, N. J., & Mayne, J. R. (1979). A novel working approach to the assessment of wind loads for equivalent static design. Journal of Wind Engineering and Industrial Aerodynamics, 4(2), 149-164..
[14] Cook, N. J., & Mayne, J. R. (1980). A refined working approach to the assessment of wind loads for equivalent static design. Journal of Wind Engineering and Industrial Aerodynamics, 6(1-2), 125-137.
[15] Lieblein, J. (1976). Efficient methods of extreme-value methodology (No. NEA-CSNI-R--1976-10).
[16] Quan, Y., Gu, M., Tamura, Y., & Chen, B. (2009, November). An extreme-value estimating method of non-Gaussian wind pressure. In Proceedings of the 7th Asia-Pacific Conference on Wind Engineering.
[17] Peng, X., Yang, L., Gavanski, E., Gurley, K., & Prevatt, D. (2014). A comparison of methods to estimate peak wind loads on buildings. Journal of Wind Engineering and Industrial Aerodynamics, 126, 11-23.
[18] Tamura, Y. (2012). “Aerodynamic Databese of High-rise Buildings.” Global Center of Excellence Program, Tokyo Poly technic University , Tokyo , Japan 〈http://www.wind.arch.tkougei.ac.jp/info_center/windpressure/highrise /Homepage/homepageHDF.htm 〉 (Sept. 29, 2015)
[19] Simiu, E., & Scanlan, R. H. (1996). Wind effects on structures. Wiley.
[20] Gierson, M. L. (2015). Reevaluation of ASCE 7-10 external pressure coefficients on the components and cladding of low-rise buildings using modern wind tunnel testing data (Doctoral dissertation).
[21] Voronoi, G. (1908). New applications of continuous parameters in the theory of quadratic forms. Z. Reine Angew. Math, 134, 198.
[22] Delaunay, B. (1934). Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk, 7(793-800), 1-2.
[23] Rice, S. O. (1944). Mathematical analysis of random noise. Bell Labs Technical Journal, 23(3), 282-332.
[24] Main, J.A. (2011). “Special-Purpose Software: MATLAB Functions for Estimation of Peaks from Time Series.” National Institute of Standards and Technology, Gaithersburg, MD, 〈www.itl.nist.gov/div898/winds-/peakest_files/peakest.htm 〉 (Sept. 29, 2015).
[25] NIST (National Institute of Standards and Technology) Statistical Engineering Division. (2004). “Extreme Winds and Wind Effects on Structures.” National Institute of Standards and Technology , Gaithersburg, MD,
〈 http://www.itl.nist.gov/div898/winds/homepage.htm 〉 (Sept. 29, 2015).
[26] Durst, C. S. "Wind speeds over short periods of time." Meteor. Mag 89.1056 (1960): 181-187.
[27] 內政部營建署,「建築物耐風設計規範及解說」,(民國 104 年)

無法下載圖示 全文公開日期 2022/08/23 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE