簡易檢索 / 詳目顯示

研究生: 賴昱維
Yu-Wei Lai
論文名稱: 結合修正FUZZY DANP及FUZZY COPRAS法於LED集魚燈改善方案之評選與設計
Combining of Modified Fuzzy DANP with the Modified Fuzzy COPRAS in the Selection of Plan of Fishing Light Design
指導教授: 林榮慶
Zone-Ching Lin
口試委員: 王國雄
Kuo-Shong Wang
許覺良
Jue-Liang Xu
傅光華
Kuang-Hua Fuh
楊條和
Tyau-Her Young
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 226
中文關鍵詞: LED集魚燈產品功能修正式FUZZY DANP修正式FUZZY COPRASTRIZ
外文關鍵詞: fishing light, product functions, modified fuzzy DANP, modified fuzzy COPRAS, TRIZ
相關次數: 點閱:256下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文發展出以專利分析所得到功能領域的功能字群之常態化數值的觀念,建立結合修正式FUZZY DANP法之修正式FUZZY COPRAS方法,決定出不同改善方案之優先順序。本研究先以LED牙科燈為例做分析,依前述結合修正式FUZZY DANP法之修正式FUZZY COPRAS法求出不同功能改善方案的優先順序。將所得之功能改善方案之最優先改善方案,再配合產品技術/功能矩陣,針對其要改善的功能領域選擇可應用的技術領域,將其應用在修正式TRIZ方法作為新產品設計時創新方法構思的依據。
    如上所述本研究將產品功能結合修正式FUZZY DANP之修正式FUZZY COPRAS法實際應用於LED集魚燈。其步驟進一步說明如下,經由LED集魚燈產品之相關文獻探討及各項專利分析,將產品功能之準則分為1.提高結構穩定性、2.增加使用方便性、3增加防水性能、4.提高散熱性5. 降低成本、延長壽命、6.增加集魚種類及集魚量7.節能、環保等7項功能領域,並將此7項功能領域做為評選新產品改善方案最重要的評估功能準則。將LED集魚燈以其具相依性的三項產品功能改善方案為結合修正式FUZZY DANP法之修正式FUZZY COPRAS優先評選方案次序的方案,計算三項功能改善方案的優先評選次序。將LED集魚燈分為3個功能改善方案,其為方案A: 增加結構穩定性與操作便利性以及增加防水性能+增加集魚種類及數量和節能,方案B: 提高散熱性及壽命+增加集魚種類及數量和節能,方案C: 增加結構穩定性與操作便利性以及增加防水性能+提高散熱性及壽命。再接著透過以產品功能為主之修正式FUZZY DEMATEL所分析出的因果圖來分析上述七項功能領域的核心功能領域及各功能領域的相互受影響程度。本文提出將修正式FUZZY DEMATEL之總關係影響矩陣T與修正式FUZZY ANP之內部相依存成對比較矩陣W3進行矩陣運算,形成新的修正式FUZZY DANP的W_C^D矩陣,接者使用本文的修正式FUZZY COPRAS方法計算出,
    最大權重值Qi的方案為最優先的選擇方案。
    最後再應用LED集魚燈的產品技術/功能矩陣,就最優先選擇的功能改善方案所對應可應用之技術領域,選擇適當的技術領域做改善,再利用修正式TRIZ發明法做創新改良設計,最後可得到新設計之LED集魚燈。


    The paper develops a concept of using the normalized numerical values of the functional cluster of functional fields obtained from patent analysis to establish a modified fuzzy COPRAS method being combined with the modified fuzzy DANP method so as to determine the priority order of different improvement plans. First of all, the paper uses LED dental light as a case for analysis. Using the abovementioned modified fuzzy COPRAS method be combined with the modified fuzzy DANP, the paper finds the priority order of different functional improvement plans. The most prioritized improvement plan determined from the obtained functional improvement plans is matched with a product technical/functional matrix. Focusing on the functional fields to be improved, the applicable technical fields are selected for application to the modified TRIZ method in order to serve as a basis for conceiving innovative methods during design of new products.
    As mentioned above, the paper integrates product functions with the modified fuzzy COPRAS method being combined with modified fuzzy DANP method, for practical application to LED fishing light. The steps are further explained below. After review of the related literature about LED fishing light products and analysis of different patents, the criteria of product functions are divided into 7 functional fields: 1. Enhance structural stability; 2. Increase ease of use; 3. Increase waterproof performance; 4. Enhance heat dissipation; 5. Reduce cost and extend life; 6. Increase fish types and fish volume; and 7. Energy saving and environmental protection. These 7 functional fields would serve as the most important criteria for function evaluation during selection of new product improvement plans.
    LED Fishing light’s 3 product functional improvement plans with interdependence are the prioritized selected plan of the modified fuzzy COPRAS method being combined with modified fuzzy DANP method. Calculate the priority order of selection of the 3 functional improvement plans. The paper divides fishing light into 3 functional improvement plans: Plan A: Increase structural stability and ease of operation and also increase waterproof performance + Increase fish types and volume and energy saving; Plan B: Enhance heat dissipation and extend life + Increase fish types and volume and energy saving; and Plan C: Increase structural stability and ease of operation and also increase waterproof performance + Enhance heat dissipation and extend life. After that, through the causal map analyzed from the product function-based modified fuzzy DEMATEL, the paper analyzes the degree of mutual influence between the core functional fields and different functional fields of the above 7 functional fields. The paper proposes making pairs for the total relational influence matrix T of the modified fuzzy DEMATEL and the internal interdependence of the modified fuzzy ANP, and then compares the pairs, and carries out calculation of matrix W3, thus forming a new W_C^Dmatrix of the modified fuzzy DANP.
    As to the paper’s modified fuzzy COPRAS method, The plan with the greatest weight value Qi finally calculated is the most prioritized selected plan.
    Lastly, the product technical/functional matrix of LED fishing light is applied. Based on the applicable technical field that the most prioritized selected functional improvement plan corresponds to, the paper selects appropriate technical fields for improvement, and uses the modified TRIZ invention method to perform innovative improvement of design. Finally, a newly designed LED fishing light can be obtained.

    摘要 I Abstract III 誌謝 VI 目錄 VIII 圖目錄 XIII 表目錄 XVII 第一章 緒論 1 1.1 研究背景與研究動機 1 1.2文獻回顧 2 1.2.1 LED之相關文獻 2 1.2.2 LED牙科燈之相關文獻 3 1.2.3 LED集魚燈之相關文獻 4 1.2.4 修正式TRIZ之相關文獻 5 1.2.5 專利分析之相關文獻 7 1.2.6 決策實驗室法(DEMATEL)結合分析網路程序法(ANP)的DANP法之相關文獻 8 1.2.7 TOPSIS之相關文獻 9 1.2.8 COPRAS之相關文獻 11 1.3 論文架構 12 第二章 LED牙科燈及LED集魚燈之簡介與相關理論 16 2.1 LED牙科燈之介紹 16 2.2 LED集魚燈之介紹 18 2.3光學理論介紹 20 2.3.1 光通量(Φ) 20 2.3.2 照度(E) 21 2.3.3 發光強度(I) 21 2.4 熱傳基本理論 23 2.4.1 熱傳導理論 23 2.4.2 熱對流理論 24 第三章 修正式TRIZ之簡介 26 3.1 TRIZ源起 26 3.2 TRIZ理論基礎 26 3.3 修正式TRIZ分群法 29 3.4 修正式TRIZ分群法判讀流程 34 第四章 結合修正式糢糊DANP與修正式糢糊TOPSIS之決策程序評選優先改良方案 38 4.1模糊理論 38 4.1.1歸屬函數 39 4.1.2標準交集(Standard Intersection) 40 4.1.3 α-截集(α-cut) 40 4.2修正式模糊分析網路程序法(Fuzzy ANP) 41 4.3模糊決策實驗式分析法(Fuzzy DEMATEL)之決策程序 42 4.4 結合修正式模糊DANP與修正式模糊TOPSIS之決策程序 44 第五章 結合修正式FUZZY DANP與修正式FUZZY COPRAS之決策程序評選優先改良方案 51 5.1 COPRAS排序法之基本概念 51 5.1.1 COPRAS排序法決策程序 51 5.2 結合修正式FUZZY DANP與修正式FUZZY COPRAS之決策程序 52 第六章 以產品功能結合修正式糢糊DANP與修正式糢糊TOPSIS評選LED牙科燈之優先設計方案 62 6.1 利用LED牙科燈專利功能字篩選出產品技術/功能之準則 62 6.2 產品功能結合修正式模糊ANP評選LED牙科燈 66 6.2.1建立層級架構 67 6.3產品功能結合修正式 FUZZY DANP與修正式FUZZY TOPSIS評選LED牙科燈優先次序之過程 68 第七章 以產品功能結合修正式糢糊DANP與修正式糢糊COPRAS評選LED牙科燈之優先設計方案 104 7.1 利用專利功能字篩選出產品技術/功能之準則 104 7.2產品功能結合修正式模糊ANP評選LED牙科燈 108 7.2.1 建立層級架構 109 7.3產品功能結合修正式DANP與COPRAS評選LED牙科燈優先次序之過程 110 第八章 以產品功能結合修正式糢糊DANP與修正式糢糊COPRAS決策程序評選LED集魚燈之優先改善方案 153 8.1 利用LED集魚燈專利功能字篩選出產品技術/功能之準則 153 8.2 產品功能結合修正式糢糊ANP評選LED集魚燈 155 8.2.1建立層級架構 156 8.3產品功能結合修正式DANP與COPRAS評選LED集魚燈各方案的優先順序步驟過程 158 第九章 LED集魚燈之修正式TRIZ創新個別方案研發過程及模擬 202 9.1 LED集魚燈功能改善方向之選擇 202 9.2 功能改善所選用欲改善專利 202 9.3 運用修正式TRIZ在LED集魚燈的功能改良與模擬 204 第十章 結論 219 參考文獻 221

    [1].Steigerwald, D. A., Bhat, J. C.,Collins, D., Fletcher, R. M., Holcomb, M.O., Ludowise, M. J., Martin, P. S.,and Rudaz, S. L. “Illumination with Solid State Lighting Technology,” IEEE Journal on Selected Topics in Quantum Electronics, Vol.8, Issue 2, pp.310-320 (2002).
    [2].杜家宏,「整合繁體和簡體中文及英文斷詞斷字系統之發光二極體檯燈專利分析研究」,碩士論文,國立台灣科技大學機械工程學系,台北,民國一百年。
    [3].McGlen, R.J., Jachuck, R., and Lin, S., “Integrated Thermal Management Techniques for High Power Electronic Devices,” Applied Thermal Engineering, Vol.24, Issue 8-9, pp.1143-1156 (2004).
    [4].Jang, D., Yu, S.H., and Lee, K.S. “Multidisciplinary Optimization of a Pin-fin Radial Heat Sink for LED Lighting Applications,” International Journal of Heat and Mass Transfer, Vol.55, Issue 4, pp.515-521 (2012).
    [5].Culham, J.R. and Muzychka, Y.S., “Optimization of Plate Fin Heat Sinks Using Entropy Generation Minimization, ” IEEE Transactions on Components and Packaging Technologies, Vol.24, pp.159-165 (2001).
    [6].Rose, E. P., Hayman, R. and Karten, S.,,牙科應用之照明系統,台灣發明專利,TW200614968(2005)。
    [7].謝其昌、李彥輝、唐誠燦,LED牙科燈之反光罩,台灣發明專利,TWI503506(2013)。
    [8].Greppin, E. H “Dental operating lamp construction,” 美國專利, US2437516 (1948).
    [9].黃金泉、郭元正,LED集魚燈具,台灣發明專利,TW I477232 B (2015)
    [10].林郅燊、洪銘琪、 王建發,LED集魚燈裝置及其系統,台灣發明專利,TW I2021536171A (2015)
    [11].Goldfire Innovator, http://www.invention-machine.com/index.htm
    [12].Liu, C. C.and Chen, J. L., “Development of Product Green Innovation Design Method,” Proceedings of EcoDesign : Second International Symposium on Environmentally Conscious Design and Inverse Manufacturing, Tokyo, Japan, pp.168-173 (2001).
    [13].Liu, C. C. and Chen, J. L., “A TRIZ Inventive Product Design Method without Contradiction Information,” The TRIZ Journal, Paper No. 6, http://www.triz-journal.com (2001).
    [14].Wang, H., Chen, G., Lin Z., and Wang, H., “Algorithm of Integrating QFD and TRIZ for the Innovative Design Process,” International Journal of Computer Applications in Technology, Vol.23, Issue 1, pp.41-52 (2005).
    [15].Tong, L. H., He, C., and Shen, L., “Automatic Classification of Patent Documents for TRIZ Users,” World Patent Information, Vol.28, pp.6-13 (2006).
    [16].Terninko, J., “The QFD, TRIZ and Taguchi Connection : Customer– Driven Robust Innovation,” The Ninth Symposium on Quality Function Deployment, pp.374-380 (1997).
    [17].León-Rovira, N. and Aguayo, H., “A new Model of the Conceptual Design Process using QFD/FA/TRIZ,” The TRIZ Journal. http://www.triz-journal.com/, July (1998).
    [18].Apte, P. R.and Mann, D. L., “Taguchi and TRIZ: Comparisons and Opportunities,” The TRIZ Journal, http://www.triz-journal.com/, November, (2001).
    [19].Mann, D. L., “Assessing the Accuracy of the Contradiction Matrix For Recent Mechanical Inventions,” The TRIZ Journal.http://www.triz-journal.com/, February (2002).
    [20].鄭振興,「利用知識工程技術進行支撐結構設計評估與設計改善之研究」,國立台灣科技大學機械工程學系,博士論文,台北(2011)。
    [21].黃浩誠,「應用改良之TRIZ理論結合QFD於補償式化學機械拋光終點偵測及補償路徑之改善」,國立台灣科技大學機械工程學系,碩士論文,台北(2007)。
    [22].Gruber, T., “A Translation Approach to Portable Ontology Specifications”, Knowledge Acquisition, Vol.5, pp.199-200 (1993).
    [23].O’Leary, D.E., “Enterprise Knowledge Management”, IEEE Computer, Vol.31, pp.54-61 (1998).
    [24].Tzeng, G. H., Chiang, C. H., and Li, C. W., “Evaluating intertwined effects ine-learning programs: A novel hybrid MCDM model based on FactorAnalysis and DEMATEL,” Exper Systems with Applications Vol.32, No4, pp.1028-1044 (2007).
    [25].Ou Yang, Y. P., Shieh, H. M., Leu, J. D. and Tzeng, G. H., “A Novel Hybrid MCDM Model Combined with DEMATEL and ANP with Applications”, International Journal of Operations Researc, Vol.5, No.3, pp.1-9 (2008)
    [26].李杰穎,「以混合多目標決策方法建立永續供應商評估模型」,中原大學工業與系統工程學系,碩士論文,桃園(2013)。
    [27].Sugiyanto and Rochimah, S.,“Integration of DEMATEL and ANP Methods for Calculate the Weight of Characteristics Software Quality Based Model ISO 9126, ”Information Technology and Electrical Engineering (ICITEE), International Conference (2013).
    [28].Wu,W. W., “Choosing Knowledge Management Strategies by Using a Combined ANP and DEMATEL Approach,”Journal of the Expert Systems with Applications, Vol.35, Issue 3, pp.41-52 (2005).
    [29].Hwang, C. L., “Multiple Attribute Decision Making Methods and Applications: A State of the Art Survey”, Springer-Verlag, New York (1981)
    [30].Stelois, H. Z. and Anthony, S., “Mulit-attribute decision making: A simulation comparison of select methods,” European Journal of Operational Research , Vo1.7, pp.507-529 (1998).
    [31].Yang, L., “Access Network Selection in a 4G Networking Environment,” A thes is presented to the University of Waterloo in fulfillment of the thes is requirement for the degree of Master of applied Science Electrical and Computer Engineering (2007).
    [32].Huan, J. S., “COTS evaluation using modified TOPSIS and ANP,” Applied Mathematics and Computation Vol.77, pp.251-259 (2006).
    [33].Adil, B. “Integrating fuzzy DEMATEL and fuzzy hierarchical TOPSIS methods for truck selection, ” Expert Systems with Applications, Vol.40, No3, pp.899-907 (2013).
    [34].Zagorskas, J., Burinskiene, M., Zavadskas, E., & Turskis, Z.. “Urbanistic assessment of city compactness on the basis of GIS applying the COPRAS method. Ekologija”, Vol.53, pp.55–63.(2007)
    [35].Podvezko, V. “The comparative analysis of MCDA methods SAW and COPRAS. Inzinerine Ekonomika-Engineering Economics,” Vol.22 No.2, pp.134–146.(2011)
    [36].Mehdi, M. and Anthony, “Application of Fuzzy AHP and COPRAS to Solve the Supplier Selection Problem” International Journal of Supply Chain Management, Vol.6,No.3, pp112-119 (2017)
    [37].Hwang, C. L., “Multiple Attribute Decision Making Methods and Applications: A State of the Art Survey”, Springer-Verlag, New York (1981).
    [38].Terninko, J., Zusman, A. and Zlotin, B., Systematic Innovation-An Introduction to TRIZ, CRC Press LLC, (1998)
    [39].鄭振興,「利用知識工程技術進行支撐結構設計評估與設計改善之研究」,國立台灣科技大學機械工程學系,博士論文,台北(2011)。
    [40].Zadeh, L. A., “Fuzzy Sets,” Information and Control, Vol.8, pp.338- 353, (1965)。
    [41].Saaty, T.L. and Takizawa, M., “Dependence and Independence: From Linear Hierarchies to Nonlinear Networks,” European Journal of Operational Research, Vol.26, Issue 2 , pp.229-237 (1986).
    [42].侯仲澤,「建立結合修正式糢糊DANP之修正式糢糊TOPSIS法並應用於LED牙科燈改善方案評選及改善設計」,國立台灣科技大學機械工程學系,碩士論文,台北(2007)。
    [43].浜出雄一,佐野荣作,稻田博史,LED集魚燈裝置及使用該裝置的魚法。中國專利,CN100594783C(2010)。

    無法下載圖示 全文公開日期 2025/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE