簡易檢索 / 詳目顯示

研究生: 莊子萱
Zih-Syuan Chuang
論文名稱: 耐熱性聚酯水解酶之表現生產及其與 MHETase 協同解聚聚對苯二甲酸乙二酯 (PET)之研究
Expression and Production of Thermostable Polyester Hydrolases and their Synergistic Depolymerization of Polyethylene Terephthalate (PET) with MHETase
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 李振綱
Cheng-Kang Lee
蔡伸隆
Shen-Long Tsai
王勝仕
Sheng-Shih Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 131
中文關鍵詞: PET 水解酶MHET水解酶葉枝堆肥角質酶聚酯水解酶萊比錫7協同解聚
外文關鍵詞: PETase, MHETase, LCC, PHL7, Synergistic depolymerization
相關次數: 點閱:172下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聚對苯二甲酸乙二酯(PET)為廣泛使用的一類塑膠材料包裝,如食品和飲料包裝、纖維製品及容器等,不論是在海洋中還是土壤中都會殘留,甚至導致水質汙染,由於聚酯高分子在自然環境中非常不易完全被降解,大量被使用的PET為現今社會必須解決的環保議題。使用生物降解技術將 PET 分解成其結構單元對環境相對友善,可以減少塑膠廢物並回收石油基原料對苯二甲酸(TPA) 和乙二醇(EG),進而使 PET 生產和回收形成循環。
大腸桿菌(Escherichia coli)具有快速繁殖且成本低廉,被廣泛使用於生產觸酶, mPETase (mature PETase) 酵素能有效分解PET,當在E.coli BL21(DE3) 宿主細胞中表達,會形成包涵體而失去活性,本論文因此使用pET-21b系統以E.coli Rosetta gami B (DE3)為宿主,在胞內可成功表達可溶mPETase蛋白,純化後可獲得比活性為14.78 U/mg。
葉枝堆肥角酯酶(Leaf-branch compost cutinase, LCC) 具有降解PET的活性,且有非常高的熱穩定性,本論文表達其突變體LCCYCCG (F243Y/D238C/S283C/Y127G),使用pET-26b系統在E.coli BL21 (DE3)宿主中表達,在20 °C及25 °C下皆可從胞外獲得此蛋白,在胞內亦可獲得大量可溶蛋白。將此基因轉至pET-21b在E.coli BL21 (DE3)及Rosetta gami B (DE3)中表達,皆可在胞內與胞外獲得此蛋白,從胞內外純化獲得的比活性分別為15.17 U/mg及 15.43 U/mg。除了良好的熱穩定性,在50 °C及70 °C更具有較高PET解聚活性。
而聚酯水解酶(PHL7)是從堆肥宏基因組中分離出之聚酯水解酶,使用pET-26b在E.coli BL21 (DE3)宿主表達,在胞外也可得到高純度的蛋白,純化後獲得的比活性為19.35 U/mg,而從胞內純化獲得的比活性則為8.39 U/mg。
PET在酶水解過程中會釋放出對苯二甲酸(TPA)、單-(2-羥乙基) 對苯二甲酸酯 (MHET)及雙-(2-羥乙基) 對苯二甲酸酯 (BHET),而BHET、MHET等產物已被確定會抑制PET 水解酶的活性。而來自I. sakaiensis的對苯二甲酸單羥乙酯水解酶(MHETase)則可水解MHET及BHET,因此同時使用MHETase可以促進PET的有效分解。mPETase 、LCCYCCG及PHL7三種酵素其水解PET能力與降解的PET其結晶度極為相關,因此本論文使用結晶度不同的PET膜材、板材、寶特瓶及纖維進行降解研究,發現MHETase能有效地在30oC下提升mPETase解聚PET板材,而LCCYCCG及PHL7則在70 oC 下才能實現最佳降解能力,由於MHETase耐溫性不佳,因此在第二天降溫至30 oC下加入MHETase參與降解反應,仍然可發現MHETase明顯提升了LCCYCCG及PHL7降解低結晶PET板材的程度。
解聚率分析結果顯示mPETase對PET寶特瓶的水解能力高於LCCYCCG及PHL7 1.5倍,添加MHETase後更是高於LCCYCCG及PHL7 3.5倍。 mPETase與 LCCYCCG則對PET板材有最高的解聚率,分別為0.461 %及7.952 %,添加MHETase後最高解聚率分別為0.850 %及9.217 %。PHL7則是對PET纖維解聚率為最高4.496 %,添加MHETase後最高解聚率可達為5.525 %。


Polyethylene terephthalate (PET) is one of widely used plastics for packaging, such as food and beverage containers, fiber products, and bottles. Due to its poor degradation capability in the natural environment, the excessive use of PET has become a pressing environmental issue. Decompose PET via various biological process is an environmental-friendly method to recycle petroleum-based raw materials of PET such as terephthalic acid (TPA) and ethylene glycol (EG).
Escherichia coli (E.coli) is a rapid growing and cost-effective bacterium widely used for enzymes production. The mPETase (mature PETase) enzyme expressed from E. coli has been shown can effectively degrade PET. However, expression in E. coli BL21(DE3) as a host cell, the mPETase forms inclusion bodies and loses its activity. Therefore, this study utilized the pET-21b as expression vector in E. coli Rosetta gami B (DE3) host cell, that successfully allowed the intracellular expression of soluble mPETase protein. Leaf-branch compost cutinase (LCC) also possesses activity in degrading PET and exhibits exceptional high thermal stability. In this study, the variant LCCYCCG (F243Y/D238C/S283C/Y127G) was expressed in E.coli BL21 (DE3) using pET-26b as vector. The expressed LCC could be obtained from the extracellular fraction when cultured at 20 °C and 25 °C. A significant amount of soluble LCC was also obtained intracellularly. In addition to its excellent thermal stability, LCC exhibited higher PET depolymerization activity at 50 °C and 70 °C. Polyester hydrolase (PHL7) is a polyester hydrolase isolated from compost metagenomes. It was expressed using the pET-26b vector in E. coli BL21 (DE3), and high-purity protein could also be obtained from the extracellular fraction.
During the enzymatic hydrolysis process of PET, terephthalic acid (TPA), mono-(2-hydroxyethyl) terephthalate (MHET), and bis-(2-hydroxyethyl) terephthalate (BHET) were released as hydrolysis products. However, BHET, MHET, and other by-products have been found to inhibit the activity of PET hydrolytic enzymes. On the other hand, the terephthalic acid mono-hydroxyethyl ester hydrolase (MHETase) derived from I. sakaiensis can hydrolyze both MHET and BHET, thereby facilitating the efficient degradation of PET in an enzymatic hydrolysis process.
The hydrolytic activity of mPETase, LCCYCCG, and PHL7 enzymes towards PET is highly correlated with the crystallinity of the substrate PET. Therefore, PET films, plates, bottles, and fibers of different crystallinities were employed to be degraded by mPETase, LCCYCCG, and PHL7, respectively. It was found that MHETase can effectively enhance the depolymerization of PET plates by mPETase at 30 °C. However, LCCYCCG and PHL7 exhibited optimal degradation activity at 70°C. Due to the poor thermal stability of MHETase, it was always added to the degradation reaction on the second day when reaction temperature was lowered to 30 °C. Remarkably, it was observed that MHETase enhanced the degradation of low-crystallinity PET plates when LCCYCCG and PHL7 were employed.
The PET depolymerization ratio showed that the hydrolysis ability of mPETase toward PET bottles was 1.5 times higher than that of LCCYCCG and PHL7. In addition, with the coordinated hydrolysis of MHETase and mPETase, the depolymerization ratio was increased by 3.5 times compared with LCCYCCG and PHL7 alone. PET plate as a low crystallinity substrate, mPETase and LCCYCCG demonstrated the highest depolymerization ratio of 0.461 % and 7.952 %, respectively. With addition of MHETase, the highest depolymerization ratio increased to 0.850 % for mPETase and 9.217 % for LCCYCCG, respectively. PHL7 exhibits a maximum depolymerization ratio of 4.496% for PET fibers. However, with the addition of MHETase, the maximum depolymerization ratio can reach as high as 5.525%.

摘要 I Abstract III 致謝 VI 圖目錄 X 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究目的與內容 3 第二章 文獻回顧 4 2.1 聚對苯二甲酸乙二酯(PET) 4 2.1.1 PET的特性及應用 4 2.1.2 PET回收方法處理 5 2.2 酶水解PET 7 2.2.1 聚對苯二甲酸乙二酯酶 (PETase) 9 2.2.2 對苯二甲酸單羥乙酯水解酶 (MHETase) 10 2.2.3 葉枝堆肥角質酶(Leaf-Branch Compost Cutinase) 12 2.2.4 聚酯水解酶Leipzig 7 (Polyester Hydrolase Leipzig 7) 13 2.2.5 PET水解酶的生產 14 2.3 PET生物降解的瓶頸 16 第三章 實驗材料與方法 17 3.1 實驗流程 17 3.2 實驗材料與設備 19 3.2.1 實驗菌株 19 3.2.2 實驗質體 19 3.2.3 實驗室藥品、酵素 20 3.2.4 溶液配製 23 3.2.5 實驗儀器與設備 26 3.3 實驗方法 28 3.3.1 質體之建構 28 3.3.2 重組蛋白之表達 32 3.3.3 勝任細胞(Competent cell)之製備 33 3.3.4 金屬離子親和力層析法 (immobilized metal affinity chromatography,IMAC) 34 3.3.5 蛋白質濃度分析 35 3.3.6 PETase、LCCYCCG及PHL7蛋白活性測試 35 3.3.7 MHETase蛋白活性測試 36 3.3.8 酵素水解PET底物 37 3.3.9 TPA、MHET及BHET含量測定 37 3.3.10 掃描電子顯微鏡(SEM) 40 3.3.11 X射線衍射儀 (XRD) 40 3.3.12 熱示差掃描分析儀(DSC) 40 第四章 結果與討論 41 4.1 mPETase純化及表達 41 4.2 pET-26b(+)-LCCYCCG質體之純化及表達 42 4.2.1 pET-21b-LCCYCCG之質體建構、表達與純化 45 4.3 PHL7純化及表達 49 4.4 MHETase表達 52 4.5 酶活性分析 53 4.5.1 p-NPA 活性分析 53 4.5.2 水解酶之p-NPA 活性與水解PET板材能力之相關性 57 4.5.3 MHETase酶活性分析 59 4.6 PET之結晶度及Tg點分析 61 4.7 三種酶對水解不同PET材料之影響 62 4.7.1 mPETase水解PET 62 4.7.2 LCCYCCG水解PET 70 4.7.3 PHL7水解PET 79 4.7.4 PET之水解聚率 87 4.7.5 PET板材6天解聚率分析 90 第五章 結論 92 附錄 94 參考文獻 105

1. Al Ghatta, H., S. Cobror and T. Severini (1997). "New Technology for Solid‐state Polymerization of Polymers: Polyethylene terephthalate–Solid‐state Polyaddition." Polymers for Advanced Technologies 8(4): 161-168.
2. Anukiruthika, T., P. Sethupathy, A. Wilson, K. Kashampur, J. A. Moses, C. J. C. R. i. F. S. Anandharamakrishnan and F. Safety (2020). "Multilayer packaging: Advances in preparation techniques and emerging food applications." Comprehensive Reviews in Food Science and Food Safety 19(3): 1156-1186.
3. Asghari, S., M. S. Khaniani, M. Darabi and S. M. J. A. P. B. Derakhshan (2014). "Cloning of soluble human stem cell factor in pet-26b (+) vector." Advanced Pharmaceutical Bulletin 4(1): 91.
4. Austin, H. P., M. D. Allen, B. S. Donohoe, N. A. Rorrer, F. L. Kearns, R. L. Silveira, B. C. Pollard, G. Dominick, R. Duman and K. El Omari (2018). "Characterization and engineering of a plastic-degrading aromatic polyesterase." Proceedings of the National Academy of Sciences 115(19): E4350-E4357.
5. Awaja, F. and D. Pavel (2005). "Recycling of PET." European polymer journal 41(7): 1453-1477.
6. Barth, M., T. Oeser, R. Wei, J. Then, J. Schmidt and W. J. B. e. j. Zimmermann (2015). "Effect of hydrolysis products on the enzymatic degradation of polyethylene terephthalate nanoparticles by a polyester hydrolase from Thermobifida fusca." Biochemical Engineering Journal 93: 222-228.
7. Benning, C. J. (1983). Plastic films for packaging: technology, applications, and process economics.
8. Biron, M. (2020). "Transition of Plastics to Renewable Feedstock and Raw Materials: Bioplastics and Additives Derived From Natural Resources." A Practical Guide to Plastics Sustainability: 469-555.
9. Boneta, S., K. Arafet, V. J. J. o. C. I. Moliner and Modeling (2021). "QM/MM study of the enzymatic biodegradation mechanism of polyethylene terephthalate." Journal of Chemical Information and Modeling 61(6): 3041-3051.
10. Carniel, A., V. de Abreu Waldow and A. M. J. B. A. de Castro (2021). "A comprehensive and critical review on key elements to implement enzymatic PET depolymerization for recycling purposes." Biotechnology Advances 52: 107811.
11. Carr, C. M., D. J. Clarke and A. D. J. F. i. M. Dobson (2020). "Microbial polyethylene terephthalate hydrolases: current and future perspectives." Frontiers in Microbiology 11: 571265.
12. Choi, J., S. J. A. m. Lee and biotechnology (2004). "Secretory and extracellular production of recombinant proteins using Escherichia coli." Applied Microbiology and Biotechnology 64: 625-635.
13. de Castro, A. M., A. Carniel, J. Nicomedes Junior, A. da Conceição Gomes, É. J. J. o. I. M. Valoni and Biotechnology (2017). "Screening of commercial enzymes for poly (ethylene terephthalate)(PET) hydrolysis and synergy studies on different substrate sources." Journal of Industrial Microbiology and Biotechnology 44(6): 835-844.
14. Demirel, B., A. Yaraş and H. Elcicek (2011). "Crystallization behavior of PET materials." Metalürji ve Malzeme Mühendisliği Makale Koleksiyonu.
15. Duru, C. E., C. E. Enyoh and I. A. Duru (2022). "Juxtaposing the Reactivity Descriptors of Plastic Monomers with their Binding Affinity at the Novel Polyester Hydrolase Target using Conceptual DFT and Machine Learning." Biointerface Research in Applied Chemistry.
16. Dutta, K., S. Sen and V. D. Veeranki (2009). "Production, characterization and applications of microbial cutinases." Process Biochemistry 44(2): 127-134.
17. Dy, P. and D. Pakotiprapha "Characterization of Ideonella sakaiensis mono-(2-hydroxyethyl) terephthalate hydrolase (MHETase) and Optimization of Reaction Conditions to Improve Plastic-Degrading Activity การ ศึกษา สมบัติ ของ เอนไซม์ โมโน-2-ไฮ ด รอก ซี เอทิล เท เร ฟ ทา เลต ไฮ โดร เล ส จาก เชื้อ แบคทีเรีย Ideonella sakaiensis และ สภาวะ ที่ เหมาะสม ของ ปฏิกิริยา ที่ เพื่อ การ ย่อย สลาย พลาสติก."
18. Egan, J. and S. J. S. A. S. Salmon (2022). "Strategies and progress in synthetic textile fiber biodegradability." SN Applied Sciences 4: 1-36.
19. Fecker, T., P. Galaz-Davison, F. Engelberger, Y. Narui, M. Sotomayor, L. P. Parra and C. A. J. B. j. Ramírez-Sarmiento (2018). "Active site flexibility as a hallmark for efficient PET degradation by I. sakaiensis PETase." Biophysical Journal 114(6): 1302-1312.
20. Graham, R., E. Erickson, R. K. Brizendine, D. Salvachúa, W. E. Michener, Y. Li, Z. Tan, G. T. Beckham, J. E. McGeehan and A. R. J. C. C. Pickford (2022). "The role of binding modules in enzymatic poly (ethylene terephthalate) hydrolysis at high-solids loadings." Chem Catalysis 2(10): 2644-2657.
21. Hahladakis, J. N., C. A. Velis, R. Weber, E. Iacovidou and P. J. J. o. h. m. Purnell (2018). "An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling." Journal of Hazardous Materials 344: 179-199.
22. Han, X., W. Liu, J.-W. Huang, J. Ma, Y. Zheng, T.-P. Ko, L. Xu, Y.-S. Cheng, C.-C. Chen and R.-T. J. N. c. Guo (2017). "Structural insight into catalytic mechanism of PET hydrolase." Nature communications 8(1): 2106.
23. Hiraga, K., I. Taniguchi, S. Yoshida, Y. Kimura and K. J. E. r. Oda (2019). "Biodegradation of waste PET: A sustainable solution for dealing with plastic pollution." EMBO reports 20(11): e49365.
24. Jerves, C., R. P. Neves, M. J. Ramos, S. da Silva and P. A. J. A. C. Fernandes (2021). "Reaction mechanism of the PET degrading enzyme PETase studied with DFT/MM molecular dynamics simulations." ACS Catalysis 11(18): 11626-11638.
25. Joo, S., I. J. Cho, H. Seo, H. F. Son, H.-Y. Sagong, T. J. Shin, S. Y. Choi, S. Y. Lee and K.-J. J. N. c. Kim (2018). "Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation." Nature communications 9(1): 382.
26. Kaushal, J., M. Khatri, S. K. J. C. E. Arya and Technology (2021). "Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini-review." Cleaner Engineering and Technology 2: 100083.
27. Kawai, F., T. Kawabata, M. J. A. m. Oda and biotechnology (2019). "Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields." Applied Microbiology and Biotechnology 103: 4253-4268.
28. Khairul Anuar, N. F. S., F. Huyop, G. Ur-Rehman, F. Abdullah, Y. M. Normi, M. K. Sabullah and R. J. I. J. o. M. S. Abdul Wahab (2022). "An Overview into Polyethylene Terephthalate (PET) Hydrolases and Efforts in Tailoring Enzymes for Improved Plastic Degradation." International Journal of Molecular Sciences 23(20): 12644.
29. Kim, J. W., S.-B. Park, Q.-G. Tran, D.-H. Cho, D.-Y. Choi, Y. J. Lee and H.-S. Kim (2020). "Functional expression of polyethylene terephthalate-degrading enzyme (PETase) in green microalgae." Microbial Cell Factories 19(1): 1-9.
30. Kleiner‐Grote, G. R., J. M. Risse and K. J. E. i. L. S. Friehs (2018). "Secretion of recombinant proteins from E. coli." Engineering in Life Sciences 18(8): 532-550.
31. Knott, B. C., E. Erickson, M. D. Allen, J. E. Gado, R. Graham, F. L. Kearns, I. Pardo, E. Topuzlu, J. J. Anderson and H. P. J. P. o. t. N. A. o. S. Austin (2020). "Characterization and engineering of a two-enzyme system for plastics depolymerization." Proceedings of the National Academy of Sciences of the United States of America 117(41): 25476-25485.
32. Koshti, R., L. Mehta and N. Samarth (2018). "Biological recycling of polyethylene terephthalate: a mini-review." Journal of Polymers and the Environment 26(8): 3520-3529.
33. Laldinpuii, Z., C. Lalmuanpuia, S. Lalhmangaihzuala, V. Khiangte, Z. Pachuau and K. Vanlaldinpuia (2021). "Biomass waste-derived recyclable heterogeneous catalyst for aqueous aldol reaction and depolymerization of PET waste." New Journal of Chemistry 45(41): 19542-19552.
34. Liu, B., L. He, L. Wang, T. Li, C. Li, H. Liu, Y. Luo and R. J. C. Bao (2018). "Protein crystallography and site‐direct mutagenesis analysis of the poly (ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis." Chembiochem: A European Journal of Chemical Biology 19(14): 1471-1475.
35. Liu, P., Y. Zheng, Y. Yuan, T. Zhang, Q. Li, Q. Liang, T. Su and Q. J. I. J. o. M. S. Qi (2022). "Valorization of Polyethylene Terephthalate to Muconic Acid by Engineering Pseudomonas Putida." International Journal of Molecular Sciences 23(19): 10997.
36. Maity, W., S. Maity, S. Bera and A. Roy (2021). "Emerging roles of PETase and MHETase in the biodegradation of plastic wastes." Applied Biochemistry and Biotechnology 193(8): 2699-2716.
37. Makryniotis, K., E. Nikolaivits, C. Gkountela, S. Vouyiouka and E. J. J. o. H. M. Topakas (2023). "Discovery of a polyesterase from Deinococcus maricopensis and comparison to the benchmark LCCICCG suggests high potential for semi-crystalline post-consumer PET degradation." Journal of Hazardous Materials 455: 131574.
38. Marten, E., R.-J. Müller, W.-D. J. P. d. Deckwer and stability (2005). "Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters." Polymer degradation and stability 88(3): 371-381.
39. Millican, J. M. and S. J. M. Agarwal (2021). "Plastic pollution: a material problem?" Macromolecules 54(10): 4455-4469.
40. Nisticò, R. (2020). "Polyethylene terephthalate (PET) in the packaging industry." Polymer Testing 90: 106707.
41. Oh, Y.-R., Y.-A. Jang, J. K. Song and G. T. Eom (2022). "Secretory production of an engineered cutinase in Bacillus subtilis for efficient biocatalytic depolymerization of polyethylene terephthalate." Bioprocess and Biosystems Engineering 45(4): 711-720.
42. Olajuyin, A. M., M. Yang, Y. Liu, T. Mu, J. Tian, O. A. Adaramoye and J. J. B. t. Xing (2016). "Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli." Bioresource Technology 214: 653-659.
43. Oromiehie, A. and A. Mamizadeh (2004). "Recycling PET beverage bottles and improving properties." Polymer international 53(6): 728-732.
44. Palm, G. J., L. Reisky, D. Böttcher, H. Müller, E. A. Michels, M. C. Walczak, L. Berndt, M. S. Weiss, U. T. Bornscheuer and G. J. N. c. Weber (2019). "Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate." Nature communications 10(1): 1717.
45. Papadopoulou, A., K. Hecht and R. J. C. Buller (2019). "Enzymatic PET degradation." Chimia 73(9): 743-743.
46. Pierre, A. C. J. I. S. R. N. (2012). "Enzymatic carbon dioxide capture." International Scholarly Research Notices 2012.
47. Pinto, A. V., P. Ferreira, R. P. Neves, P. A. Fernandes, M. J. Ramos and A. L. J. A. C. Magalhaes (2021). "Reaction mechanism of MHETase, a PET degrading enzyme." ACS Catalysis 11(16): 10416-10428.
48. Qin, Z. H., J. H. Mou, C. Y. H. Chao, S. S. Chopra, W. Daoud, S. y. Leu, Z. Ning, C. Y. Tso, C. K. Chan and S. J. C. Tang (2021). "Biotechnology of plastic waste degradation, recycling, and valorization: current advances and future perspectives." ChemSusChem 14(19): 4103-4114.
49. Sagong, H.-Y., H. Seo, T. Kim, H. F. Son, S. Joo, S. H. Lee, S. Kim, J.-S. Woo, S. Y. Hwang and K.-J. J. A. C. Kim (2020). "Decomposition of the PET film by MHETase using Exo-PETase function." ACS Catalysis 10(8): 4805-4812.
50. Salvador, M., U. Abdulmutalib, J. Gonzalez, J. Kim, A. A. Smith, J.-L. Faulon, R. Wei, W. Zimmermann and J. I. J. G. Jimenez (2019). "Microbial genes for a circular and sustainable bio-PET economy." Genes & Cancer 10(5): 373.
51. Samak, N. A., Y. Jia, M. M. Sharshar, T. Mu, M. Yang, S. Peh and J. J. E. i. Xing (2020). "Recent advances in biocatalysts engineering for polyethylene terephthalate plastic waste green recycling." Environment International 145: 106144.
52. Sevilla, M. E., M. D. Garcia, Y. Perez-Castillo, V. Armijos-Jaramillo, S. Casado, K. Vizuete, A. Debut and L. J. P. Cerda-Mejía (2023). "Degradation of PET Bottles by an Engineered Ideonella sakaiensis PETase." Polymers for Advanced Technologies 15(7): 1779.
53. Shi, L., H. Liu, S. Gao, Y. Weng and L. Zhu (2021). "Enhanced extracellular production of is PETase in Escherichia coli via engineering of the pelB signal peptide." Journal of Agricultural and Food Chemistry 69(7): 2245-2252.
54. Shibasaki, T., H. MoRI, A. J. B. Ozaki, biotechnology, and biochemistry (2000). "Enzymatic production of trans-4-hydroxy-L-proline by regio-and stereospecific hydroxylation of L-proline." Bioscience, Biotechnology, and Biochemistry 64(4): 746-750.
55. Shukla, S., A. M. J. P. d. Harad and stability (2006). "Aminolysis of polyethylene terephthalate waste." Polymer degradation and stability 91(8): 1850-1854.
56. Singh, P., L. Sharma, S. R. Kulothungan, B. V. Adkar, R. S. Prajapati, P. S. S. Ali, B. Krishnan and R. J. P. o. Varadarajan (2013). "Effect of signal peptide on stability and folding of Escherichia coli thioredoxin." PloS One 8(5): e63442.
57. Skoczinski, P., L. Krause, A. Raschka, L. Dammer and M. Carus (2021). Current status and future development of plastics: Solutions for a circular economy and limitations of environmental degradation. Methods in Enzymology, Elsevier. 648: 1-26.
58. Son, H. F., I. J. Cho, S. Joo, H. Seo, H.-Y. Sagong, S. Y. Choi, S. Y. Lee and K.-J. Kim (2019). "Rational protein engineering of thermo-stable PETase from Ideonella sakaiensis for highly efficient PET degradation." ACS Catalysis 9(4): 3519-3526.
59. Sonnendecker, C., J. Oeser, P. K. Richter, P. Hille, Z. Zhao, C. Fischer, H. Lippold, P. Blázquez‐Sánchez, F. Engelberger and C. A. J. C. Ramírez‐Sarmiento (2022). "Low carbon footprint recycling of post‐consumer PET plastic with a metagenomic polyester hydrolase." ChemSusChem 15(9): e202101062.
60. Strobl, G. R. and G. R. Strobl (1997). The physics of polymers, Springer.
61. Sulaiman, S., S. Yamato, E. Kanaya, J.-J. Kim, Y. Koga, K. Takano and S. Kanaya (2012). "Isolation of a novel cutinase homolog with polyethylene terephthalate-degrading activity from leaf-branch compost by using a metagenomic approach." Applied and Environmental Microbiology 78(5): 1556-1562.
62. Sulaiman, S., D.-J. You, E. Kanaya, Y. Koga and S. J. B. Kanaya (2014). "Crystal structure and thermodynamic and kinetic stability of metagenome-derived LC-cutinase." Biochemistry 53(11): 1858-1869.
63. Taniguchi, I., S. Yoshida, K. Hiraga, K. Miyamoto, Y. Kimura and K. Oda (2019). "Biodegradation of PET: current status and application aspects." ACS Catalysis 9(5): 4089-4105.
64. Teuten, E. L., J. M. Saquing, D. R. Knappe, M. A. Barlaz, S. Jonsson, A. Björn, S. J. Rowland, R. C. Thompson, T. S. Galloway and R. J. P. t. o. t. r. s. B. b. s. Yamashita (2009). "Transport and release of chemicals from plastics to the environment and to wildlife." Philosophical transactions of the royal society B: biological sciences 364(1526): 2027-2045.
65. Tokiwa, Y., B. P. Calabia, C. U. Ugwu and S. J. I. j. o. m. s. Aiba (2009). "Biodegradability of plastics." International Journal of Molecular Sciences 10(9): 3722-3742.
66. Wang, Z., Z. Ma and L. J. M. Li (2016). "Flow-induced crystallization of polymers: Molecular and thermodynamic considerations." Macromolecules 49(5): 1505-1517.
67. Wei, R., T. Oeser, J. Schmidt, R. Meier, M. Barth, J. Then and W. Zimmermann (2016). "Engineered bacterial polyester hydrolases efficiently degrade polyethylene terephthalate due to relieved product inhibition." Biotechnology and Bioengineering 113(8): 1658-1665.
68. Wei, R., T. Tiso, J. Bertling, K. O’Connor, L. M. Blank and U. T. J. N. C. Bornscheuer (2020). "Possibilities and limitations of biotechnological plastic degradation and recycling." Nature Catalysis 3(11): 867-871.
69. Weiland, M. H. (2020). Enzymatic biodegradation by exploring the rational protein engineering of the polyethylene terephthalate hydrolyzing enzyme PETase from Ideonella sakaiensis 201-F6. Mechanistic Enzymology: Bridging Structure and Function, ACS Publications: 161-174.
70. Yoshida, S., K. Hiraga, T. Takehana, I. Taniguchi, H. Yamaji, Y. Maeda, K. Toyohara, K. Miyamoto, Y. Kimura and K. J. S. Oda (2016). "A bacterium that degrades and assimilates poly (ethylene terephthalate)." Science 351(6278): 1196-1199.

無法下載圖示
全文公開日期 2026/08/16 (校外網路)
全文公開日期 2026/08/16 (國家圖書館:臺灣博碩士論文系統)
QR CODE