簡易檢索 / 詳目顯示

研究生: 曾令威
Ling-wei Tseng
論文名稱: 鈦磷酸鹽離子導體應用於聚苯並咪唑質子交換膜燃料電池
Application of titanium phosphates ion conductor to proton exchange membrane fuel cell with polybenzimidazole electrolyte
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 林秀麗
Hsiu-li Lin
陳燿騰
Yaw-terng Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 95
中文關鍵詞: 鈦磷酸鹽核殼結構質子交換膜燃料電池
外文關鍵詞: Titanium phosphate, Core-Shell structure, Proton Exchange Membrane Fuel Cell(PEMFC)
相關次數: 點閱:367下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文包含兩部份:先合成出於160-260℃溫度範圍內具有高質子導電率之鈦磷酸鹽,再將鈦磷酸鹽與質子交換膜整合並於相同溫度範圍內量測效能表現。
在鈦磷酸鹽的結果中:我們合成出具有核殼結構特色之低價數金屬摻雜鈦磷酸鹽。以Ti0.9Mg0.1P3.0Oy晶體為核材,外面包覆非晶質之Ti0.9Mg0.1P5.0Oy殼層。富磷殼層提供質子傳導的主要途徑。實驗結果顯示核殼結構鈦磷酸鹽於溫度100-260℃之質子導電率皆在4.0×10-2 S cm-1以上。高的磷與鈦莫耳比之樣品,其質子導電率在100-260℃超過6.0×10-2 S cm-1,更明確地,質子導電率在260℃達到0.13 S cm-1。
在鈦磷酸鹽應用於PEMFC中,我們聚焦在離子導體於膜電極中的應用。電極的配方包含85wt % Pt/C(觸媒)、10 wt% Ti0.9Mg0.1P3.5Oy(離子導體)、5 wt% PTFE (黏著劑)時,具有最佳的電功率表現。當陽極白金觸媒承載量為0.6mg/cm2且陰極白金觸媒承載量為1.0 mg/cm2時,單電池於180℃達到最大電功率密度為146 mW/cm2。


This thesis involves two parts; synthesis of titanium phosphates with high proton conductivity ranging in 160-260℃, performance measurement of a proton exchange membrane fuel cell (PEMFC) integrating the titanium phosphate in the same temperature range.
On the results of titanium phosphate- we synthesize a number of titanium phosphates doped with low valence metal which are featured with a core-shell structure. The core material is crystalline Ti0.9Mg0.1P3.0Oy, which is coated with the shell of noncrystalline Ti0.9Mg0.1P5.0Oy. The phosphorus-rich shell serves as the main passage of proton conduction. Experimental results show that the proton conductivity of core-shell titanium phosphates can be more than 4.0×10-2 S cm-1 at 100-260℃. The specimens of high molar ratio of phosphorus over titanium, its proton conductivity exceeds 6.0×10-2 S cm-1 at 100-260℃, more specifically, the 260℃ proton conductivity reaches 0.13 Scm-1.
On the application of titanium phosphates to PEMFC- We focus on its electrode application as the ionomer. The electrode formulation, including 85 wt% Pt/C (catalyst), 10 wt% Ti0.9Mg0.1P3.5Oy (ionomer), 5 wt% PTFE (binder), gives the best cell performance. With a 0.6mg/cm2 Pt loading for anode and 1.0 mg/cm2 Pt loading for cathode, the peak power of the single cell reaches 146 mW/cm2 at 180℃.

誌謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1前言 1 1.2 研究動機 2 第二章 文獻回顧與理論基礎 7 2.1 質子交換膜燃料電池之工作原理及發展趨勢 7 2.2 質子傳導機制(Proton conduction mechanism) 12 2.2.1 載具機制(vehicle mechanism) 13 2.2.2 Grotthus機制(Grotthus mechanism) 14 2.3 有機質子傳導膜及無機固態電解質材料 15 2.3.1 有機高溫型質子傳導膜 15 2.3.1.1 H3PO4/PBI在燃料電池上的應用 16 2.3.1.2 PBI於高溫型質子交換膜燃料電池之應用 18 2.3.2 高溫型無機質子導體 18 2.3.2.1 含氫的固態無機酸(Solid acids) 19 2.3.2.2 多磷酸鹽複合材料 20 2.3.2.3 不含氫固態無機磷酸鹽 22 2.3.3 有機/無機混成薄膜 25 2.4 電極 27 2.5 膜電極組極化現象 32 2.6 膜電極組之活化過程 34 第三章 實驗方法與分析儀器 37 3.1 實驗藥品 37 3.2 儀器設備 39 3.3 實驗方法 40 3.3.1 固態燒結法合成過渡金屬磷酸鹽質子導體材料 40 3.3.1.1實驗流程 40 3.3.1.2核殼結構鎂摻雜鈦磷酸鹽質子導體材料的製備 41 3.3.1.3異價金屬陽離子摻雜鈦磷酸鹽質子導體材料 42 3.3.2 質子交換膜燃料電池之膜電極組製備 44 3.3.2.1 觸媒漿料製備及電極製作 44 3.3.2.2 膜電極組壓合及組裝步驟 46 3.4 材料與電化學特性分析 49 3.4.1 X光繞射晶相分析(XRD) 49 3.4.2 交流阻抗分析(AC Impedance)-質子導電率量測 50 3.4.2.1交流阻抗分析基本原理 50 3.4.2.2 質子導電率量測 53 3.4.3 燃料電池之測試 56 3.4.3.1測試系統簡介 56 3.4.3.2 電池電流-電壓測試 58 第四章 結果與討論 59 4.1 異價金屬陽離子摻雜之鈦磷酸鹽 61 4.1.1 交流阻抗分析 61 4.1.2 質子導電率 65 4.2 鎂摻雜鈦磷酸鹽之XRD相鑑定 68 4.3 核殼結構之鎂摻雜鈦磷酸鹽 70 4.3.1 交流阻抗分析 70 4.3.2 質子導電率 74 4.4 無機磷酸鹽應用於膜電極中之單電池效能分析 77 4.4.1 陰陽極觸媒層中離子導體含量對電功率密度表現的影響 79 4.4.2 陰陽極觸媒承載量對電功率密度表現的影響 81 4.4.3 陰極端不同進料氣體對單電池表現的影響 83 4.4.3.1 電功率密度表現 83 4.4.3.2 交流阻抗分析 84 4.4.4 離子導體(磷與金屬比例)對電功率密度表現的影響 85 第五章 結論 87 參考文獻 89 附錄A 94 附錄B 95

【1】 E.J. Carlson, et al., "Cost Analysis of PEM Fuel Cell Systems for Transportation," NREL, 2005.
【2】 K.E. Martin, J.P. Kopasz, K.W. McMurphy, "Status of Fuel Cells and the Challenges Facing Fuel Cell Technology Today Chapter 1," ACS Symposium Series, Washington DC, 2010.
【3】 Q. Li, et al., "Approaches and recent development of polymer electrode membranes for fuel cells operating above 100oC," Chemistry of Materials, vol. 15, pp. 4896-4915, 2003.
【4】 C. Yang, et al., "Approach and technical challenges to high temperature operation of proton exchange membrane fuel cells," Journal of Power Sources, vol. 103, pp. 1-9, 2001.
【5】 T. Shiraia, et al., "Proton conductivity and microstructures of the core-shell type solid electrolytes in the MO2-In2O3-P2O5 (M=Ti, Sn, Zr) systems," Solid State Ionics, vol. 180, pp. 569-574, 2009.
【6】 James. Larminie and A. Dicks, "Fuel Cell Systems Explained_Second Edition," 2003.
【7】 P.K. Das, X. Li, and Z.-S. Liu, "Analysis of liquid water transport in cathode catalyst layer of PEM fuel cells," International Journal of Hydrogen Energy, vol. 35, pp. 2403-2416, 2010.
【8】 G. Faubert, D. Gyay and J. P. Dodelet, "Pt Inclusion Compounds as Oxygen Reduction Catalysts in Polymer-Electrolyte Fuel Cells," Journal of The Electrochemical Society, vol. 145, pp. 2985-2992, 1998.
【9】 T. R. Ralph, et al., "Low Cost Electrodes for Proton Exchange Membrane Fuel Cells. Performance in Single Cells and Ballard Stacks," Journal of The Electrochemical Society, vol. 144, pp. 3845-3857, 1997.
【10】 K. Joon, "Fuel Cells – A 21th Century Power System," Journal of Power Sources, vol. 71, pp. 12-18, 1997.
【11】 C. Marr and X. Li, "Composition and Performance of Catalyst Layer in a Proton Exchange Membrane Fuel Cell," Journal of Power Sources, vol. 77, pp. 17-27, 1999.
【12】 K. Ledjeff-Hey, et al., "Compact Hydrogen Production Systems for Solid Polymer Fuel Cells," Journal of Power Sources, vol. 71, pp. 199-207, 1998.
【13】 Y. M. Kim, et al., "Organic-inorganic composite membranes as addition of SiO2 for high temperature fuel cells(PEMFCs)," Electrochimica Acta, vol. 49, pp. 4787-4796, 2004.
【14】 F. Barbir, "PEM Fuel Cells: Theory and Practice¬_First Edition," 2005.
【15】 K.-D. Kreuer, et al., "Transport in proton conductors for fuel cell applications: Simulations, elementary reaction and phenomenology," Chemical Reviews, vol. 104, pp. 4637-4678, 2004.
【16】 E. Peled, T. Duvdevani, and A. Melman, "A Novel Proton-Conducting
Membrane," Electrochemical and Solid-State Letters, vol. 1, pp. 210-211, 1998.
【17】 X. Wu, A. Verma, and K. Scott, "A Sb-doped SnP2O7 Solid Proton Conductor for Intermediate Temperature Fuel Cells," Fuel Cells, vol. 8, pp. 453-458, 2008.
【18】 C.W. Sun, U. Stimming, "Synthesis and characterization of NH4PO3 based composite with superior proton conductivity for intermediate temperature fuel cells," Electrochimica Acta, vol. 53, pp. 6417-6422, 2008.
【19】 X. X. Xu, et al., "Proton conductivity of Al(H2PO4)3-H3PO4 composites at intermediate temperature," Solid State Ionics, vol. 180, pp. 343-350, 2009.
【20】 T. Shirai, et al., "Studies on Proton Conductivity of Diphosphate-based Electrolytes," Phosphorus Research Bulletin, vol. 21, pp. 31-40, 2007.
【21】 S. R. Phadke, et al., "Proton conduction in acceptor doped SnP2O7," Solid State Ionics, vol. 183, pp. 26-31, 2011.
【22】 K. Amezawa, et al., "Protonic conduction and defect structures in Sr-doped LaPO4," Solid State Ionics, vol. 145, pp. 233-240, 2001.
【23】 A. L. Smith, 'The analytical chemistry of silicones," Analytical Research Department of Dow Corning Corporation, Midland, Michigan, Ch12, pp. 347, 1991.
【24】 吳千舜, "新型質子傳導膜," 碩士 , 化學系, 國立中央大學, 桃園縣, 2004.
【25】 P. Heo, "Intermediate-Temperature Fuel Cells Using a Proton- Conducting Sn0.9In0.1P2O7 Electrolyte," Ph.D dissertation, Nagoya University, Japan, 2008.
【26】 J.-T. Wang, et al., "A H2O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte," Electrochimica Acta, vol. 41, pp. 193-197 , 1996.
【27】 J.-T. Wang, et al., "Direct Methanol Fuel Cell using Acid Doped Polybenzimidazole as a Polymer Electrolyte," Journal of Applied Electrochemistry, vol. 26, pp. 751-765, 1996.
【28】 J.-T. Wang, et al., "Trimethoxymethane as an alternative fuel for a direct oxidation PBI polymer electrolyte fuel cell," Electrochimica Acta, vol. 43, pp. 3821-3828, 1998.
【29】 S. M. Zaidi, et al., "Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications," Journal of Membrane Science, vol. 173, pp. 17-34, 2000.
【30】 R. H. He, et al., "Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells," Journal of Membrane Science, vol. 277, pp. 38-45, 2006.
【31】 S. W. Chuang, S. L. C. Hsu, and Y. H. Liu, "Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells," Journal of Membrane Science, vol. 305, pp. 353–363, 2007.
【32】 Q.-F Li, H. A. Hjuler, and N. J. Bjerrum, "Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications," Journal of Applied Electrochemistry, vol. 31, pp. 773-779, 2001.
【33】 Y.-L. Ma, et al., "Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells," Journal of The Electrochemical Society, vol. 151, pp. A8-A16, 2004.
【34】 P. Krishnan, J.-S. Park, and C.-S. Kim, "Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide," Journal of Power Sources, vol. 159, pp. 817-823, 2006.
【35】 B. Zhu, B.E. Mellander, "Proton conduction in nitrate-based oxides and related ceramics at intermediate temperatures," Solid State Ionics, vol. 70-71, pp. 285-290, 1994.
【36】 Y.-k. Taninouchi, et al., "Dehydration behavior of the superprotonic conductor CsH2PO4 at moderate temperatures: 230 to 260 °C," Journal of Materials Chemistry, vol. 17, pp. 3182-3189, 2007.
【37】 T. Matsui, et al., "Effect of pyrophosphates as supporting matrices on proton conductivity for NH4PO3 composites at intermediate temperatures," Journal of Power Sources, vol. 171, pp. 483-488, 2007.
【38】 C. Sun, U. Stimming, "Synthesis and characterization of NH4PO3 based composite with superior proton conductivity for intermediate temperature fuel cells," Electrochimica Acta, vol. 53, pp. 6417-6422, 2008.
【39】 H. Muroyama, et al., " Electrochemical properties of MH2PO4/SiP2O7-based electrolytes (M=alkaline metal) for use in intermediate-temperature fuel cells," Solid State Ionics, vol. 178, pp.1512-1516, 2007.
【40】 M. Nagao, et al., "Proton Conduction in In3+-Doped SnP2O7 at Intermediate Temperatures," Journal of The Electrochemical Society, vol. 153, pp. A1604-A1609, 2006.
【41】 P. Heo, et al., "Performance of an Intermediate-Temperature Fuel Cell Using a Proton-Conducting Sn0.9In0.1P2O7 Electrolyte," Journal of The Electrochemical Society, vol. 153, pp. A897-A901, 2006.
【42】 Y. C. Jin, "An H3PO4-doped polybenzimidazole/Sn0.95Al0.05P2O7 composite membrane for high-temperature proton exchange membrane fuel cells," Journal of Power Sources, vol. 196, pp. 6042-6047, 2011.
【43】 M.-Q. Li, Z.-G. Shao, K. Scott, "A high conductivity Cs2.5H0.5PMo12O40/polybenzimidazole (PBI)/H3PO4 composite membrane for proton-exchange membrane fuel cells operating at high temperature," Journal of Power Sources, vol.183, pp. 69-75, 2008.
【44】 R. O’Hayre, D.M. Barnett, and F. B. Prinz, "The Triple Phase Boundary - A Mathematical Model and Experimental Investigations for Fuel Cells," Journal of The Electrochemical Society, vol. 152, pp. A439-A444, 2005.
【45】 R. O’Hayre and F. B. Prinz, "The Air/Platinum/Nafion Triple-Phase Boundary: Characteristics, Scaling, and Implications for Fuel Cells. Journal of The Electrochemical Society, vol. 151, pp. A756-A762, 2004.
【46】 F. A. Uribe, T. E. Springer, and S. Gottesfeld, "A Microelectrode Study of Oxygen Reduction at the Platinum/Recast-Nafion Film Interface," Journal of The Electrochemical Society, vol. 139, pp. 765-773, 1992.
【47】 P. Zelenay, et al., "A Comparison of the Properties of CF3SO3H and H3PO4 in Relation to Fuel Cells," Journal of The Electrochemical Society, vol. 133, pp. 2262-2267, 1986.
【48】 E. Gileadi, "Electrode Kinetics for Chemists, Chemical Engineers and Materials Scientists," John Wiley & Sons, vol. 276, New York, 1993.
【49】 D. A. Landsman, F. J. Luczak, "Catalyst studies and coating technologies, in Handbook of Fuel Cells—Fundamentals Technology and Applications," John Wiley & Sons, vol. 4, pp. 811-831, 2003.
【50】 Q.-F Li, H. A. Hjuler, and N. J. Bjerrum, "Oxygen reduction on carbon supported platinum catalysts in high temperature polymer electrolyte," Electrochimica Acta, vol. 45, pp. 4219-4226, 2000.
【51】 M. Razaq, A. Razaq, and E. Yeager, "Perfluorosulfonimide as an Additive in Phosphoric Acid Fuel Cell," Journal of The Electrochemical Society, vol. 136, pp. 385-390, 1989.
【52】 K. Kanamura, et al., "Perfluoro-ethylene-1,2-bis-phosphonic Acid Fuel Cell Electrolyte," Journal of The Electrochemical Society, vol. 143, pp. 2765-2770, 1996.
【53】 F. Seland, et al., "Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte," Journal of Power Sources, vol. 160, pp. 27-36, 2006.
【54】 J. O. Park, et al., "Role of Binder in High Temperature PEMFC Electrode," Journal of The Electrochemical Society, vol. 158, pp. B675-B681, 2011.
【55】 V. B. Silva, A. Rouboa, "Hydrogen-Fed PEMFC: Overvoltage Analysis during an Activation Procedure," Journal of Electroanalytical Chemistry, vol. 671, pp. 58-66, 2012.
【56】 J.-W. Hu, et al., "500 h Continuous aging life test on PBI/H3PO4 high-temperature PEMFC," International Journal of Hydrogen Energy, vol. 31, pp. 1855-1862, 2006.
【57】 Y. Zhai, et al., "Degradation Study on MEA in H3PO4/PBI hgh-Temperature PEMFC Life Test," Journal of The Electrochemical Society, vol. 154, pp. B72-B76, 2007.
【58】 Z. Qi, S. Buelte, "Effect of open circuit voltage on performance and degradation of high temperature PBI–H3PO4 fuel cells," Journal of Power Sources, vol. 161, pp. 1126-1132, 2006.
【59】 G. Liu, et al., "Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI," Journal of Power Sources, vol. 162, pp. 547-552, 2006.
【60】 Y. Zhai, et al., "The stability of Pt/C catalyst in PBI/H3PO4 PEMFC during high temperature life test," Journal of Power Sources, vol. 164, pp. 126-133, 2007.
【61】 M. Boaventura, A. Mendes, "Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes," International Journal of Hydrogen Energy, vol. 35, pp. 11649-11660, 2010.
【62】 T. Tingelöf, J. K. Ihonen, "A rapid break-in procedure for PBI fuel cells," International Journal of Hydrogen Energy, vol. 34, pp. 6452-6456, 2009.
【63】 楊佳穎, "焦磷酸鈰做為質子動力燃料電池電解質之研究," 碩士, 化學工程系, 國立台灣科技大學, 台北市, 2009.
【64】 M. V. Le, et al., "Proton conductors of cerium pyrophosphate for intermediate temperature fuel cell," Electrochimica Acta, vol. 56, pp. 6654-6660, 2011.
【65】 K. Genzaki, et al., "Proton conductivity and solid acid of Mg-, In-, and Al-Doped SnP2O7," Journal of The Electrochemical Society, vol. 156, pp. B806-B810, 2009.
【66】 K. J. de Vries, "Electrical and mechanical properties of proton conducting SrCe0.95Yb0.05O3 − α," Solid State lonics, vol. 100, pp. 193-200, 1997.

QR CODE