簡易檢索 / 詳目顯示

研究生: 傅識恩
She-En Fu
論文名稱: 硼氮負載金團簇表面對CO氧化的理論研究:H2O的影響
Theoretical Study of CO Oxidation on Au Clusters Supported on Boron Nitride: Effect of H2O
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
Shawn-Dian Lin
郭哲來
Jer-Lai Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 95
中文關鍵詞: 一氧化碳氧化奈米金團硼氮表面水的影響
外文關鍵詞: CO Oxidation, Nano gold clusters, Boron Nitride surface, Effect of water
相關次數: 點閱:184下載:52
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

一氧化碳(CO)是一種對人體有劇毒的氣體。它與人體中的血紅素有很高的親和力,經常造成疾病、窒息甚至是死亡的意外發生。因此,如何探測抑或是表面上催化CO氧化成CO2為最適當的方法。特別是在Haruta等人的突破性的發現後,使用奈米金團簇作為催化劑,將CO氧化成CO2,已然成為一個熱門的題材。
在本篇研究中,利用第一原理Vienna Ab-initio Simulation Package(VASP)將金團簇吸附在BN表面上(Au/BN),透過電荷密度分析,瞭解表面對於金團的影響,以及於CO、O2分子吸附後的差異。除此之外,我們還藉由反應模擬探索了水對於CO氧化反應的影響。研究結果顯示,奈米金團簇不但能穩定地吸附在BN表面上,催化活性也隨著因從BN向金團的電子轉移而增強。其中,CO的伸縮振動頻率光譜會隨著含水量的增加而藍移,這現象與先前的實驗觀察結果一致。而在比較所有可能的CO氧化途徑後,我們發現在潮濕環境下,CO氧化速率決定步驟的反應障礙僅為0.28eV,亦低於先前的研究。
透過本研究,我們更加瞭解Au/BN系統如何能在低溫條件下催化CO氧化反應的原因,並且在與純金團的結果比較,瞭解表面對於金團簇的影響。期望未來能藉由表面特性分析來找出更適合之材料,提供傳統實驗以外之方法,在此提出新的觀點,以供實驗學家參考。


Carbon monoxide (CO) is a highly toxic gas for human because of its high affinity with hemoglobin, and it causes many illnesses, suffocation, and sudden death. Therefore, the elimination of CO is attracted practical importance to control the environment. In many processes, the catalytic oxidation of CO to CO2 over a heterogeneous catalyst surface is the suitable method in CO elimination. Due to the groundbreaking work of Haruta et al., (J. Catal 144, 175-192,1993) the use of gold nanoparticles as a catalyst to oxidize CO to CO2 has become an interesting topic. Previously, many theoretical and experimental studies have explored the catalytic activity of Au clusters on pure metals and metal oxide surfaces. Here we considered Au9 clusters supported on a boron-nitride sheet (BN) and investigated its catalytic activity towards CO oxidation using first-principles calculations. Furthermore, we also explored the effect of water on the CO oxidation on Au clusters supported on the boron-nitride sheet. Our results indicate that Au9 cluster is stably adsorbed on BN surface and the catalytic activity of Au9 cluster is enhanced through electron transfer from BN to Au9 cluster. We found that the stretching vibration of adsorbed CO on Au9/BN surface is blue-shifted with the increase of water content, which is in agreement with the previous experimental observation. By exploring the all possible CO oxidation pathways, we found that in presence with water on the Au9/BN surface, the reaction barrier of rate determining step of CO oxidation is only 0.28eV, which is significantly lower than the previously studies. Our calculated results suggest that Au9 clusters supported on BN surface could be a promising catalyst for CO oxidation at low-temperature conditions.

ABSTRACT I 摘要 II CONTENTS III INDEX OF FIGURE V INDEX OF TABLE XI Chapter 1- Introduction 1 1.1 Nano-gold materials 2 1.2 The effects of supported surface 3 1.2.1 Hexagonal boron-nitride (h-BN) surface 4 1.2.2 metal oxide surface 5 1.3 The effects of water 6 Chapter 2- CO Oxidation on Pure Gold Clusters 8 2.1 Computational details 8 2.2 CO oxidation on pure gold clusters 10 2.2.1 O2 activation 10 2.2.2 CO oxidation with/without water 11 2.3 The effects of water on CO adsorption 15 2.4 Conclusion 18 Chapter 3-CO oxidation on Au9 cluster supported on BN surface 19 3.1 Computational Details 19 3.2 CO oxidation in dry system 23 3.2.1 Adsorption of Au9 Clusters 23 3.2.2 Adsorption of CO and O2 molecules 24 3.2.3 The CO oxidation mechanisms without moisture 29 3.3 CO oxidation in wet system 32 3.3.1 Effects of water on CO and O2 -adsorption 32 3.3.2 Role of water in CO oxidation reaction mechanisms 39 3.3.2-a HO2 formation 39 3.4.2-b Intermediate COOH formation and its reaction 45 3.4 Conclusion 49 Chapter 4- CO Adsorption on different Metal oxide surfaces 51 4.1 Introduction 51 4.2 Computational details 52 4.3 Results and discussion 56 4.3.1 Adsorption of gold clusters 56 4.3.2 Molecular adsorption 59 4.3.2-a O2 adsorption 59 4.3.2-b CO adsorption 62 4.4 Conclusion 66 Summary and Future work 67 References 69 Appendix 74

1. Ertl, G., Reactions at Well-Defined Surfaces. Surf Sci 1994, 299 (1-3), 742-754.
2. Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J., Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458 (7239), 746-749.
3. Shelef, M.; McCabe, R. W., Twenty-five years after introduction of automotive catalysts: what next? Catal Today 2000, 62 (1), 35-50.
4. Twigg, M. V., Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B-Environ 2007, 70 (1-4), 2-15.
5. Park, E. D.; Lee, D.; Lee, H. C., Recent progress in selective CO removal in a H-2-rich stream. Catal Today 2009, 139 (4), 280-290.
6. Huang, S. J.; Hara, K.; Fukuoka, A., Green catalysis for selective CO oxidation in hydrogen for fuel cell. Energ Environ Sci 2009, 2 (10), 1060-1068.
7. Masatake, H.; Tetsuhiko, K.; Hiroshi, S.; Nobumasa, Y., Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters 1987, 16 (2), 405-408.
8. Li, J. P. H.; Liu, Z. B.; Wu, H.; Yang, Y., Investigation of CO oxidation over Au/TiO2 catalyst through detailed temperature programmed desorption study under low temperature and Operando conditions. Catal Today 2018, 307, 84-92.
9. Du, M. M.; Sun, D. H.; Yang, H. W.; Huang, J. L.; Jing, X. H.; Odoom-Wubah, T.; Wang, H. T.; Jia, L. S.; Li, Q. B., Influence of Au Particle Size on Au/TiO2 Catalysts for CO Oxidation. J Phys Chem C 2014, 118 (33), 19150-19157.
10. Hinojosa-Reyes, M.; Camposeco-Solis, R.; Zanella, R.; Rodriguez-Gonzalez, V.; Ruiz, F., Gold Nanoparticle: Enhanced CO Oxidation at Low Temperatures by Using Fe-Doped TiO2 as Support. Catal Lett 2018, 148 (1), 383-396.
11. Dosa, M.; Piumetti, M.; Bensaid, S.; Andana, T.; Novara, C.; Giorgis, F.; Fino, D.; Russo, N., Novel Mn-Cu-Containing CeO2 Nanopolyhedra for the Oxidation of CO and Diesel Soot: Effect of Dopants on the Nanostructure and Catalytic Activity. Catal Lett 2018, 148 (1), 298-311.
12. Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M., Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003, 301 (5635), 935-938.
13. Arena, F.; Di Chio, R.; Fazio, B.; Espro, C.; Spiccia, L.; Palella, A.; Spadaro, L., Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation Part I. Influence of cerium addition on structure and CO oxidation activity. Appl Catal B-Environ 2017, 210, 14-22.
14. Liu, Y.; Jia, C. J.; Yamasaki, J.; Terasaki, O.; Schuth, F., Highly Active Iron Oxide Supported Gold Catalysts for CO Oxidation: How Small Must the Gold Nanoparticles Be? Angew Chem Int Edit 2010, 49 (33), 5771-5775.
15. Herzing, A. A.; Kiely, C. J.; Carley, A. F.; Landon, P.; Hutchings, G. J., Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 2008, 321 (5894), 1331-1335.
16. Yao, Y.-F. Y., The oxidation of hydrocarbons and CO over metal oxides: III. Co3O4. Journal of Catalysis 1974, 33 (1), 108-122.
17. Grillo, F.; Natile, M. M.; Glisenti, A., Low temperature oxidation of carbon monoxide: the influence of water and oxygen on the reactivity of a Co3O4 powder surface. Appl Catal B-Environ 2004, 48 (4), 267-274.
18. Zhou, M.; Zhang, A. H.; Dai, Z. X.; Zhang, C.; Feng, Y. P., Greatly enhanced adsorption and catalytic activity of Au and Pt clusters on defective graphene. J Chem Phys 2010, 132 (19).
19. Haruta, M., Catalysis of gold nanoparticles deposited on metal oxides. Cattech 2002, 6 (3), 102-115.
20. Pietron, J. J.; Stroud, R. M.; Rolison, D. R., Using three dimensions in catalytic mesoporous nanoarchitectures. Nano Lett 2002, 2 (5), 545-549.
21. Haruta, M., When gold is not noble: catalysis by nanoparticles. Chem Rec 2003, 3 (2), 75-87.
22. Overbury, S. H.; Schwartz, V.; Mullim, D. R.; Yan, W. F.; Dai, S., Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. Journal of Catalysis 2006, 241 (1), 56-65.
23. Valden, M.; Lai, X.; Goodman, D. W., Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281 (5383), 1647-1650.
24. Gao, M.; Horita, D.; Ono, Y.; Lyalin, A.; Maeda, S.; Taketsugu, T., Isomerization in Gold Clusters upon O2 Adsorption. The Journal of Physical Chemistry C 2017, 121 (5), 2661-2668.
25. Cheng, X. L.; Li, F.; Wang, C. A., Density functional theory study of CO oxidation by O-2 on Au-n (n=11, 13 and 14) clusters as catalysis: From a comparative review. Comput Theor Chem 2016, 1097, 1-7.
26. Schauermann, S.; Nilius, N.; Shaikhutdinov, S.; Freund, H. J., Nanoparticles for Heterogeneous Catalysis: New Mechanistic Insights. Accounts Chem Res 2013, 46 (8), 1673-1681.
27. Campbell, C. T., CATALYST-SUPPORT INTERACTIONS Electronic perturbations. Nat Chem 2012, 4 (8), 597-598.
28. Lykhach, Y.; Kozlov, S. M.; Skala, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvorak, F.; Johanek, V.; Neitzel, A.; Myslivecek, J.; Fabris, S.; Matolin, V.; Neyman, K. M.; Libuda, J., Counting electrons on supported nanoparticles. Nat Mater 2016, 15 (3), 284-+.
29. Liu, Z. P.; Hu, P.; Alavi, A., Catalytic role of gold in gold-based catalysts: A density functional theory study on the CO oxidation on gold. J Am Chem Soc 2002, 124 (49), 14770-14779.
30. Sheu, W. S.; Chang, M. W., CO oxidation on Ag(111): The catalytic role of H2O. Surf Sci 2014, 628, 104-110.
31. Vayssilov, G. N.; Lykhach, Y.; Migani, A.; Staudt, T.; Petrova, G. P.; Tsud, N.; Skala, T.; Bruix, A.; Illas, F.; Prince, K. C.; Matolin, V.; Neyman, K. M.; Libuda, J., Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat Mater 2011, 10 (4), 310-315.
32. Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M., Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454 (7207), 981-U31.
33. Gao, M.; Lyalin, A.; Taketsugu, T., Catalytic Activity of Au and Au-2 on the h-BN Surface: Adsorption and Activation of O-2. J Phys Chem C 2012, 116 (16), 9054-9062.
34. Gao, M.; Lyalin, A.; Taketsugu, T., CO oxidation on h-BN supported Au atom. J Chem Phys 2013, 138 (3).
35. Date, M.; Haruta, M., Moisture effect on CO oxidation over Au/TiO2 catalyst. Journal of Catalysis 2001, 201 (2), 221-224.
36. Jia, C.; Zhong, W.; Deng, M.; Jiang, J., Microscopic Insight into the Activation of O2 by Au Nanoparticles on ZnO(101) Support. The Journal of Physical Chemistry C 2016, 120 (8), 4322-4328.
37. Kotobuki, M.; Leppelt, R.; Hansgen, D. A.; Widmann, D.; Behm, R. J., Reactive oxygen on a Au/TiO2 supported catalyst. Journal of Catalysis 2009, 264 (1), 67-76.
38. Gong, X. Q.; Hu, P.; Raval, R., The catalytic role of water in CO oxidation. J Chem Phys 2003, 119 (12), 6324-6334.
39. Bongiorno, A.; Landman, U., Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Phys Rev Lett 2005, 95 (10), 106102.
40. Date, M.; Okumura, M.; Tsubota, S.; Haruta, M., Vital role of moisture in the catalytic activity of supported gold nanoparticles. Angew Chem Int Edit 2004, 43 (16), 2129-2132.
41. Schubert, M. M.; Venugopal, A.; Kahlich, M. J.; Plzak, V.; Behm, R. J., Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3. Journal of Catalysis 2004, 222 (1), 32-40.
42. Costello, C. K.; Yang, J. H.; Law, H. Y.; Wang, Y.; Lin, J. N.; Marks, L. D.; Kung, M. C.; Kung, H. H., On the potential role of hydroxyl groups in CO oxidation over Au/Al2O3. Appl Catal a-Gen 2003, 243 (1), 15-24.
43. Bollinger, M. A.; Vannice, M. A., A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO2 catalysts. Appl Catal B-Environ 1996, 8 (4), 417-443.
44. Grunwaldt, J. D.; Kiener, C.; Wogerbauer, C.; Baiker, A., Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. Journal of Catalysis 1999, 181 (2), 223-232.
45. Liu, H.; Kozlov, A. I.; Kozlova, A. P.; Shido, T.; Asakura, K.; Iwasawa, Y., Active Oxygen Species and Mechanism for Low-Temperature CO Oxidation Reaction on a TiO2-Supported Au Catalyst Prepared from Au(PPh3)(NO3) and As-Precipitated Titanium Hydroxide. Journal of Catalysis 1999, 185 (2), 252-264.
46. Liu, S. P.; Zhao, M.; Sun, G. E.; Gao, W.; Jiang, Q., Different effects of water molecules on CO oxidation with different reaction mechanisms. Phys Chem Chem Phys 2018, 20 (12), 8341-8348.
47. Tran-Thuy, T. M.; Chen, C. C.; Lin, S. D., Spectroscopic Studies of How Moisture Enhances CO Oxidation over Au/BN at Ambient Temperature. Acs Catal 2017, 7 (7), 4304-4312.
48. Kresse, G.; Furthmuller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 1996, 6 (1), 15-50.
49. Kresse, G.; Furthmuller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 1996, 54 (16), 11169-11186.
50. Kresse, G.; Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium. Phys Rev B 1994, 49 (20), 14251-14269.
51. Kresse, G.; Hafner, J., Ab initio molecular dynamics for liquid metals. Phys Rev B 1993, 47 (1), 558-561.
52. Blochl, P. E., Projector Augmented-Wave Method. Phys Rev B 1994, 50 (24), 17953-17979.
53. Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 1999, 59 (3), 1758-1775.
54. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Phys Rev Lett 1996, 77 (18), 3865-3868.
55. Henkelman, G.; Uberuaga, B. P.; Jonsson, H., A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 2000, 113 (22), 9901-9904.
56. Bader, R. F. W., Atoms in Molecules: A Quantum Theory. Oxford University Press:: New York, 1990.
57. Henkelman, G.; Arnaldsson, A.; Jonsson, H., A fast and robust algorithm for Bader decomposition of charge density. Comp Mater Sci 2006, 36 (3), 354-360.
58. Tang, W.; Sanville, E.; Henkelman, G., A grid-based Bader analysis algorithm without lattice bias. J Phys-Condens Mat 2009, 21 (8).
59. Yang, M.; Zhou, M.; Zhang, A. H.; Zhang, C., Graphene Oxide: An Ideal Support for Gold Nanocatalysts. J Phys Chem C 2012, 116 (42), 22336-22340.
60. Laskowski, R.; Blaha, P.; Schwarz, K., Bonding of hexagonal BN to transition metal surfaces: An ab initio density-functional theory study. Phys Rev B 2008, 78 (4).
61. Liu, C. Y.; Tan, Y. Z.; Lin, S. S.; Li, H.; Wu, X. J.; Li, L.; Pei, Y.; Zeng, X. C., CO Self-Promoting Oxidation on Nanosized Gold Clusters: Triangular Au-3 Active Site and CO Induced O-O Scission. J Am Chem Soc 2013, 135 (7), 2583-2595.
62. Huang, M.; Fabris, S., CO adsorption and oxidation on ceria surfaces from DFT+U calculations. J Phys Chem C 2008, 112 (23), 8643-8648.
63. Liu, X. S.; Wang, X. D.; Yao, M.; Cui, W.; Yan, H., Effects of Fe doping on oxygen vacancy formation and CO adsorption and oxidation at the ceria(111) surface. Catal Commun 2015, 63, 35-40.
64. Gao, M.; Lyalin, A.; Taketsugu, T., Role of the Support Effects on the Catalytic Activity of Gold Clusters: A Density Functional Theory Study. Catalysts 2011, 1 (1), 18-39.
65. Gao, Y.; Shao, N.; Pei, Y.; Chen, Z. F.; Zeng, X. C., Catalytic Activities of Subnanometer Gold Clusters (Au-16-Au-18, Au-20, and Au-27-Au-35) for CO Oxidation. Acs Nano 2011, 5 (10), 7818-7829.
66. Kim, H. Y.; Lee, H. M.; Henkelman, G., CO oxidation mechanism on CeO(2)-supported Au nanoparticles. J Am Chem Soc 2012, 134 (3), 1560-70.
67. Sinthika, S.; Kumar, E. M.; Thapa, R., Doped h-BN monolayer as efficient noble metal-free catalysts for CO oxidation: the role of dopant and water in activity and catalytic de-poisoning. J Mater Chem A 2014, 2 (32), 12812-12820.
68. Gao, Y.; Zeng, X. C., Water-Promoted O-2 Dissociation on Small-Sized Anionic Gold Clusters. Acs Catal 2012, 2 (12), 2614-2621.
69. Sun, K.; Kohyama, M.; Tanaka, S.; Takeda, S., Roles of Water and H2 in CO Oxidation Reaction on Gold Catalysts. The Journal of Physical Chemistry C 2018, 122 (17), 9523-9530.
70. Gokhale, A. A.; Dumesic, J. A.; Mavrikakis, M., On the mechanism of low-temperature water gas shift reaction on copper. J Am Chem Soc 2008, 130 (4), 1402-1414.

QR CODE