簡易檢索 / 詳目顯示

研究生: 黃郁翔
Yu-Hsiang Huang
論文名稱: 建築帷幕系統中BIM元件的命名方法
A functional element naming approach for BIM element in building envelope system
指導教授: 鄭瑞光
Ray-Guang Cheng
王瑞堂
Jui-Tang Wang
口試委員: 許勝凱
施宣光
鄭瑞光
王瑞堂
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 49
中文關鍵詞: 建築資訊模型識別碼通用資料環境協同合作
外文關鍵詞: BIM, Identifier, Common data environment, Collaboration
相關次數: 點閱:220下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

建築資訊模型 (BIM) 正在成為建築、工程和施工 (AEC) 行業中一個全面的協作過程。 BIM的目的是允許多個專案參與者在整合相關訊息和完成一個成功的專案進行協作。持久且可識別的名稱是 BIM 中元素的直接標識符。目前,BIM中的元素名稱依賴於專案參與者的手動鍵入。此外,基於跨學科專案參與者的命名約定是不同的。 BIM 標準推薦使用通用資訊環境 (CDE) 來管理資料。本文討論了建設專案中協作環境的框架。專案參與者可以通過在他們的資訊環境中使用元素名稱來檢索資料。為了減少在建築專案中命名 BIM 元素的手動工作,我們提出了一種方法,以確保名稱的唯一性和可識別性。該方法的策略可以概括為四個方面:i)幾何形式與非幾何屬性分開。 ii) 利用列表資料結構存儲命名約定以創建元素名稱以鏈接資料庫。 iii) 專案資訊以兩種方式分發給所有參與者:集中式和分佈式資料環境。 iv) 使用 Grasshopper 程式創建唯一且一致的名稱;通過所提出的方法,每個唯一一致的元素名稱都存儲在資料庫中。本文還提供了一個物理帷幕專案的案例研究以進行驗證。進一步討論和分析了五個過程,以及在不同協作環境中的優缺點。


Building information modelling (BIM) is a collaborative process for managing construction projects in the architecture, engineering, and construction (AEC) industry. BIM’s purpose is collaboration between project participants while integrating information and completing successful projects. Persistent and recognisable names are used as direct element identifiers in BIM. Currently, element names are manually keyed in by participants. Common data environments (CDE) are recommended by BIM standards for managing information. We discuss the collaborative environment framework in construction. Participants retrieve data using element names in data environments. To reduce manually naming BIM elements, we propose an approach that ensures a unique, recognisable name. The approach strategy is summarised in four points: Geometric forms are separated from geometric properties. List data structures are utilised to store naming conventions, creating element names to link databases. Project data are distributed to participants in centralised and distributed data environments. The Grasshopper program is used to create unique element names, which are stored in a database. We present a case study of a physical curtain wall project for verification. A discussion and analysis of the five procedures, advantages and disadvantages of our approach in diverse collaboration environments are explored.

Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related works: Existing BIM element naming approach for an identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.0.1 Generating approach for numerical-based BIM element identification code . . . . . . . . . . . . . . 9 2.0.2 Generating approach for properties-based BIM elements naming . . . . . . . . . . . . . . . . . . . 11 3 Proposed approach: A functional element naming approach . . . 17 3.0.1 Naming convention setup procedure . . . . . . . . 20 3.0.2 FE name registration procedure . . . . . . . . . . 23 3.0.3 Naming convention query procedure . . . . . . . . 25 3.0.4 FE name update procedure . . . . . . . . . . . . . 27 3.0.5 FE name synchronization procedure . . . . . . . . 30 4 Case study and discussion . . . . . . . . . . . . . . . . . . . . . 36 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

[1] W. Jung and G. Lee, “The status of bim adoption on six continents,” International Journal of Civil
and Environmental Engineering, vol. 9, no. 5, pp. 512–516, 2015.
[2] S. Bertelsen, “Construction as a complex system,” in Proceedings for the 11th annual conference of
the International Group for Lean Construction, pp. 11–23, 2003.
[3] W. Solihin, C. Eastman, and Y. C. Lee, “A framework for fully integrated building information models
in a federated environment,” Advanced Engineering Informatics, vol. 30, no. 2, pp. 168–189, 2016.
[4] S. Azhar, “Building information modeling (bim): Trends, benefits, risks, and challenges for the aec
industry,” Leadership and management in engineering, vol. 11, no. 3, pp. 241–252, 2011.
[5] D. Bryde, M. Broquetas, and J. M. Volm, “The project benefits of building information modelling
(bim),” International journal of project management, vol. 31, no. 7, pp. 971–980, 2013.
[6] Y. Jiao, Y. Wang, S. Zhang, Y. Li, B. Yang, and L. Yuan, “A cloud approach to unified lifecycle data
management in architecture, engineering, construction and facilities management: Integrating bims
and sns,” Advanced Engineering Informatics, vol. 27, no. 2, pp. 173–188, 2013.
[7] H. Lai, X. Deng, and T.-Y. P. Chang, “Bim-based platform for collaborative building design and project
management,” Journal of Computing in Civil Engineering, vol. 33, no. 3, p. 05019001, 2019.
[8] I. T. S. 13, “Iso 19650-1: 2018. organization and digitization of information about buildings and civil
engineering works, including building information modelling (bim)–information management using
building information modelling–part 1: concepts and principles,” 2018.
[9] S. Shih, H. Chen, C. Hsu, K. Yen, and C. Lee, “Element-based lifecycle information modelling for
curved building skins,” in 14th Conference on Advanced Building Skins, Berna, Suíça, 2019.
[10] X. Tao, M. Das, Y. Liu, and J. C. Cheng, “Distributed common data environment using blockchain
and interplanetary file system for secure bim-based collaborative design,” Automation in Construction,
vol. 130, p. 103851, 2021.
[11] J. Zhang, Q. Liu, F. Yu, Z. Hu, and W. Zhao, “A framework of cloud-computing-based bim service for
building lifecycle,” in Computing in Civil and Building Engineering (2014), pp. 1514–1521, 2014.
[12] T. Beach, I. Petri, Y. Rezgui, and O. Rana, “Management of collaborative bim data by federating
distributed bim models,” Journal of Computing in Civil Engineering, vol. 31, no. 4, p. 04017009,
2017.
[13] J. Wang, P. Wu, X. Wang, and W. Shou, “The outlook of blockchain technology for construction
engineering management,” Frontiers of engineering management, pp. 67–75, 2017.
[14] N. O. Nawari and S. Ravindran, “Blockchain technologies in bim workflow environment,” in Computing
in Civil Engineering 2019: Visualization, Information Modeling, and Simulation, pp. 343–352,
American Society of Civil Engineers Reston, VA, 2019.
[15] J. Li, D. Greenwood, and M. Kassem, “Blockchain in the built environment and construction industry:
A systematic review, conceptual models and practical use cases,” Automation in Construction,
vol. 102, pp. 288–307, 2019.
[16] F. Xue and W. Lu, “A semantic differential transaction approach to minimizing information redundancy
for bim and blockchain integration,” Automation in construction, vol. 118, p. 103270, 2020.
[17] J. J. Hunhevicz and D. M. Hall, “Do you need a blockchain in construction? use case categories and
decision framework for dlt design options,” Advanced Engineering Informatics, vol. 45, p. 101094,
2020.
[18] E. Curry, J. O’Donnell, E. Corry, S. Hasan, M. Keane, and S. O’Riain, “Linking building data in the
cloud: Integrating cross-domain building data using linked data,” Advanced Engineering Informatics,
vol. 27, no. 2, pp. 206–219, 2013.
[19] K. Afsari, C. M. Eastman, and D. R. Shelden, “Cloud-based bim data transmission: current status and
challenges,” in ISARC. Proceedings of the International Symposium on Automation and Robotics in
Construction, vol. 33, p. 1, IAARC Publications, 2016.
[20] A. GhaffarianHoseini, T. Zhang, N. Naismith, A. GhaffarianHoseini, D. T. Doan, A. U. Rehman,
O. Nwadigo, and J. Tookey, “Nd bim-integrated knowledge-based building management: Inspecting
post-construction energy efficiency,” Automation in Construction, vol. 97, pp. 13–28, 2019.
[21] H. Abdirad and P. Mathur, “Artificial intelligence for bim content management and delivery: Case
study of association rule mining for construction detailing,” Advanced Engineering Informatics,
vol. 50, p. 101414, 2021.
[22] W. Solihin, C. Eastman, Y.-C. Lee, and D.-H. Yang, “A simplified relational database schema for
transformation of bim data into a query-efficient and spatially enabled database,” Automation in Construction,
vol. 84, pp. 367–383, 2017.
[23] J. Park and H. Cai, “Wbs-based dynamic multi-dimensional bim database for total construction asbuilt
documentation,” Automation in Construction, vol. 77, pp. 15–23, 2017.
[24] J. I. Kim, J. Kim, M. Fischer, and R. Orr, “Bim-based decision-support method for master planning
of sustainable large-scale developments,” Automation in Construction, vol. 58, pp. 95–108, 2015.
[25] J. A. McMurry, N. Juty, N. Blomberg, T. Burdett, T. Conlin, N. Conte, M. Courtot, J. Deck, M. Dumontier,
D. K. Fellows, et al., “Identifiers for the 21st century: How to design, provision, and reuse
persistent identifiers to maximize utility and impact of life science data,” PLoS biology, vol. 15, no. 6,
p. e2001414, 2017.
[26] K. Chen, W. Lu, H. Wang, Y. Niu, and G. G. Huang, “Naming objects in bim: A convention and
a semiautomatic approach,” Journal of Construction Engineering and Management, vol. 143, no. 7,
p. 06017001, 2017.
[27] Y. Zhai, K. Chen, J. X. Zhou, J. Cao, Z. Lyu, X. Jin, G. Q. Shen, W. Lu, and G. Q. Huang, “An
internet of things-enabled bim platform for modular integrated construction: A case study in hong
kong,” Advanced Engineering Informatics, vol. 42, p. 100997, 2019.
[28] X. Gao and P. Pishdad-Bozorgi, “Bim-enabled facilities operation and maintenance: A review,” Advanced
engineering informatics, vol. 39, pp. 227–247, 2019.
[29] S. Rokooei, “Building information modeling in project management: necessities, challenges and outcomes,”
Procedia-Social and Behavioral Sciences, vol. 210, pp. 87–95, 2015.
[30] M. Juszczyk, A. Tomana, and M. Bartoszek, “Current issues of bim-based design change management,
analysis and visualization,” Procedia engineering, vol. 164, pp. 518–525, 2016.
[31] T. El-Diraby, T. Krijnen, and M. Papagelis, “Bim-based collaborative design and socio-technical analytics
of green buildings,” Automation in Construction, vol. 82, pp. 59–74, 2017.
[32] M. Niknam and S. Karshenas, “A shared ontology approach to semantic representation of bim data,”
Automation in Construction, vol. 80, pp. 22–36, 2017.
[33] V. Moayeri, O. Moselhi, and Z. Zhu, “Bim-based model for quantifying the design change time ripple
effect,” Canadian Journal of Civil Engineering, vol. 44, no. 8, pp. 626–642, 2017.
[34] J.-R. Lin and Y.-C. Zhou, “Semantic classification and hash code accelerated detection of design
changes in bim models,” Automation in Construction, vol. 115, p. 103212, 2020.
[35] E. S. Lin, R. Roithmayra, and S. K. Chiu, “A review of bim maturity for tensile membrane architecture,”
in Proceedings of IASS Annual Symposia, vol. 2015, pp. 1–12, International Association for
Shell and Spatial Structures (IASS), 2015.
[36] M. Das, J. C. Cheng, and S. S. Kumar, “Social bimcloud: a distributed cloud-based bim platform for
object-based lifecycle information exchange,” Visualization in Engineering, vol. 3, no. 1, pp. 1–20,
2015.
[37] C. Merschbrock and B. E. Munkvold, “Effective digital collaboration in the construction industry–
a case study of bim deployment in a hospital construction project,” Computers in Industry, vol. 73,
pp. 1–7, 2015.
[38] S. Tang, D. R. Shelden, C. M. Eastman, P. Pishdad-Bozorgi, and X. Gao, “A review of building
information modeling (bim) and the internet of things (iot) devices integration: Present status and
future trends,” Automation in Construction, vol. 101, pp. 127–139, 2019.
[39] Wikipedia contributors, “Industry foundation classes — Wikipedia, the free encyclopedia,” 2021.
[Online; accessed 12-October-2021].
[40] J. Wang, W. Lu, D. Liu, and F. Xue, “The heterogeneity of bim objects in different construction contexts,”
in Construction Research Congress 2018, pp. 210–220, American Society of Civil Engineers
(ASCE)., 2018.
[41] Wikipedia contributors, “String-searching algorithm — Wikipedia, the free encyclopedia,” 2022. [Online;
accessed 25-January-2022].
[42] M. Khaja, J. Seo, and J. McArthur, “Optimizing bim metadata manipulation using parametric tools,”
Procedia Engineering, vol. 145, pp. 259–266, 2016.

QR CODE