簡易檢索 / 詳目顯示

研究生: 李冠賦
GUAN-FU LI
論文名稱: 瞬間啟動方柱的流場特性:質點軌跡視流法與PIV的應用
Characteristics of Flow Field around an Impulsively Started Square Cylinder
指導教授: 黃榮芳
Rong-fang Huang
口試委員: 孫珍理
Jhen-li Sun
林怡均
Yi-jyun Lin
張家和
Chia-he chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 281
中文關鍵詞: 流場可視化拓樸速度場渦漩逸放
外文關鍵詞: PIV, PTFV, Topology, Vortex Shedding
相關次數: 點閱:337下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對無傾角之二維方柱,以雷諾數與旋轉角為變數,探討方柱周圍流場及尾流區渦漩逸放之流場行為。將方柱模型置於一拖曳式水槽中,利用質點軌跡視流法觀察方柱從啟動渦漩至渦漩逸放之流場衍化過程,並以質點影像速度分析測得流場量化之結果。使用熱膜風速儀量測方柱尾流區的渦漩逸放頻率,並將結果與特徵模態相結合。方柱的時間平均流場共有五種特徵模態,以旋轉角14°±1°為分界,分成低角度(次臨界)區及高角度(超臨界)區。在低角度區,因黏滯效應的因素,方柱兩個側邊之流場顯現出多種渦漩的模態,並歸納成三種模態。並以5°為分界,區分成I區及III區;以Rew = 2259±30區分成I區及II區。在高角度區,分成兩種模態,因高角度的分離效應,使得兩個側邊的流場呈現簡單的分離泡模態;並以Rew = 3330±30區分成IV區及V區。IV、V區之模態,又可區分為旋轉角15°< α < 38°與38° < α < 45°兩種模態,在15° < α < 38°時,B面前端會有分離泡但在38° < α < 45°時,因旋轉角夠大,B面的前端分離泡因而消失,在45°時,流場變為楔型流,在A、B面上分離泡完全消失。這些模態的流場包括迎風面之分離流;方柱側面呈現的雙分離泡、單分離泡及貼附流;方柱尾流區之迴流泡等。根據熱膜風速儀輸出的時序圖與頻譜圖,可得知方柱在14°角附近時渦漩逸放頻率最高,因此史卓數也達最大值。


The evolution processes of the surface flow and wake behind an impulsively started square cylinder at different incidence angles have been studied experimentally in a water towing tank. Particle tracking flow visualization method (PTFV) and particle image velocimetry (PIV) were used to obtain clear flow images for Reynolds numbers between 103 and 104. The incidence angles were also varied from 0 to 45 degrees. Vortex shedding characteristics were measured by a single-component hot-film anemometer for Reynolds numbers. Flows around the square cylinder were identified in five categories. The incidence angles between 13 to 15 degrees exhibited as a dividing line, between which low-incidence angle region and high incidence-angle region. The low incidence-angle region was divided into three modes. The region for which incidence angle below 5 degree and Reynolds number lower than 2259±30 were identified as region I. Reynolds numbers above 2289 were identified as region II. The region where incidence angle was between 5 and 13 degrees are identified as region III. Flow characteristics in three categories prominently different. The high-incidence angle region were divided into two modes. Reynolds number below 3300 were identified as region IV and Reynolds number above 3360 were categorized as region V. Region IV and V have two modes based on incidence angle α. These angles were identified as 15 < α < 38 and 38 < α < 45. At incidence angle 45 degree, a symmetric wedge flow is observed on the two surfaces facing windward. Flow modes of dual bubble, single bubble, attached flow and recirculation bubble were identified from PIV study. From hot-film anemometer study vortex shedding frequency was highest for square column at incidence angle about 14 degree.

摘要......................................................i Abstract.................................................ii 誌謝....................................................iii 目錄.....................................................iv 符號索引................................................vii 表圖索引...............................................viii 第一章 緒論...............................................1 1.1 研究動機.........................................1 1.2 文獻回顧.........................................2 1.3 研究目標.........................................3 第二章 實驗設備、儀器與方法...............................4 2.1 實驗設備.........................................4 2.1.1 拖曳式水槽.......................................4 2.1.2 方柱模型.........................................4 2.2 實驗儀器及方法...................................5 2.2.1 質點軌跡流場觀察法(PTFV).........................5 2.2.2 質點影像速度儀(PIV)..............................6 2.2.3 尾流渦漩逸放頻率的量測..........................11 第三章 流場觀察..........................................13 3.1 低攻角之可視化..................................13 3.1.1 低攻角之流場衍化(I區)...........................13 3.1.2 低攻角之流場衍化(II區)..........................14 3.1.3 低攻角之流場衍化(III區).........................16 3.2 高攻角之可視化..................................17 3.2.1 高攻角之流場衍化(IV區)..........................17 3.2.2 高攻角流場衍化(V區).............................19 3.3 特殊攻角45°之可視化.............................21 3.3.1 低雷諾數下流場衍化..............................21 3.3.2 高雷諾數下流場衍化..............................22 第四章 時間平均流場與拓樸分析............................24 4.1 特徵模態分......................................24 4.2 時間平均流場之各模態行為........................24 4.2.1 低攻角區之時間平均流場(I區).....................24 4.2.2 低角度區之時間平均流場(II區)....................25 4.2.3 低角度區之時間平均流場(III區)...................25 4.2.4 高攻角區之時間平均流場(IV區)....................26 4.2.5 高攻角區之時間平均流場(V區).....................26 4.2.6 特殊攻角45°之時間平均流場.......................26 4.3 方柱拓樸流場分析................................27 4.3.1 低攻角區之時間平均拓樸分析......................29 4.3.2 高攻角區之時間平均拓樸分析......................30 4.3.3 特殊攻角45°之時間平均平均拓樸分析...............31 4.4 方柱表面流場分析................................32 4.4.1 方柱A面停滯點隨旋轉角變化情形...................32 4.4.2 方柱B面邊界層分離、再接觸及分離泡的行為與特性隨旋轉角變化的情形...........................................32 4.4.3 方柱C面邊界層分離、再接觸及分離泡、迴流泡的行為與特性隨旋轉角變化的情形...................................33 4.4.4 方柱D面停滯流、邊界層分離、再接觸、迴流泡及分離泡的行為與特性隨旋轉角變化的情形...........................33 第五章 PIV技術分析瞬時流場衍化過程與拓樸分析.............34 5.1 瞬時流場之各模態行為與拓樸分析..................34 5.1.1 低攻角區之瞬時流場衍化與拓樸分析(I區)...........34 5.1.2 低攻角區之瞬時流場衍化與拓樸分析 (Rew = 2259)...36 5.1.3 低攻角區之瞬時流場衍化與拓樸分析 (II區).........38 5.1.4 低攻角區之瞬時流場衍化與拓樸分析 (III區)........40 5.1.5 高攻角區之瞬時流場衍化與拓樸分析 (IV區).........42 5.1.6 高攻角區之瞬時流場衍化與拓樸分析 (V區)..........44 5.1.7 特殊攻角45°之瞬時流場衍化與拓樸分析.............47 第六章 方柱尾流區渦漩頻率量測............................52 6.1 方柱D面啟動渦漩流逸衍化時間.....................52 6.2 不同旋轉角之尾流區渦漩流逸頻率特性..............52 第七章 結論..............................................56 參考文獻.................................................58

[1] Nakayama, Y. and Boucher, R. F., Introduction to Fluid Mechanics, Arnold, Great Britain, 1999.
[2] Williamson, C. H. K.,“Vortex Dynamics in the cylinder wake,” Annular Review of Fluids Mechanics, Vol. 28, 1996, pp. 447-539.
[3] Huang, R. F., Lin, B. H., and Yen, S. C., “Time-average topological flow patterns and their Influence on vortex shedding of a square cylinder in cross flow at incidence,” Journal of Fluids and Structures, Vol. 26, No. 3, 2010, pp. 406-429.
[4] Rockwell, D. O., “Organized fluctuations due to flow past a square cross section cylinder,” Journal of Fluids Engineering, Vol. 99, September 1977, pp. 511-516.
[5] Kwok, K. C. S., “Effects of turbulence on the pressure distribution around a square cylinder and possibility of reduction,” Journal of Fluids Engineering, Vol. 105, No. 2, 1983, pp. 140-145.
[6] Chen, J. M. and Liu, C. H., “Vortex shedding and surface pressures on a square cylinder at incidence to a uniform air stream,” International Journal of Heat and Fluid Flow, Vol. 20, No. 6, 1999, pp. 592-597.
[7] Richard, C. F. and John, H. S., Fundamentals of Air Pollution Engineering, Prentice Hall, 1988, pp. 290-357.
[8] In, K. M., Choi, D. H., and Kim, M. U., “Two-dimensional viscous flow past a flat plate,” Fluid Dynamics Research, Vol. 15, No. 1, 1995, pp. 13-24.
[9] Lighthill, M. J., Laminar Boundary Layer, Ed. Rosenhead, L., Oxford University, 1963, pp. 44-88
[10] Perry, A. E., and Fairlie, B. D., “Critical points in flow patterns,” Advances in Geophysics. B, Vol. 18, part 2, 1974, pp. 299-315.
[11] Perry, A. E., Chong M. S., and Lim, T. T., “The vortex-shedding process behind two-dimensional bluff bodies,” Journal of Fluid Mechanics, Vol. 116, 1982, pp. 77-90.
[12] Lyn, D. and Rodi, W., “The flapping shear layer formed by flow separation from the forward corner of square cylinder,” Journal of Fluid Mechanics, Vol. 267, May 1994, pp. 353-376.
[13] Steiner, T. R. and Perry, A. E., “Large-scale vortex structure in turbulent wakes behind bluff bodies. Part2. Far-wake structure,” Journal of Fluid Mechanics, Vol. 174, 1987, pp. 271-298.
[14] Merzkrich, W., Flow Visualization, Academic press, New York, 1974, pp. 53-56.
[15] Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical Studies of the flows around free or surface-mounted obstacles applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, Part 1, 1978, pp. 179-200.
[16] Huang, R. F., Chen, J. M., and Hsu C. M., “Modulation of surface flow and vortex shedding of a circular cylinder in the subcritical regime by self-excited vibration rod,” Journal of Fluid Mechanics, Vol. 555, 2006, pp. 321-352.
[17] Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematical studies of the flow around free or surface-mounted obstacles; applying topology to flow visualization,” Journal of Fluid Mechanics, Vol. 86, 1978, pp. 179-200.
[18] Roshko, A., “On the wake and drag of bluff bodies,” Journal of the Aerospace Science, Vol. 22, 1955, pp. 124-135.
[19] Simons, J. E. L., “Similarities between two-dimensional and axisymmetric vortex wake,” Aero. Quarterly, Vol. 26, February 1977, pp. 15-20.

無法下載圖示 全文公開日期 2016/06/09 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE