簡易檢索 / 詳目顯示

研究生: 張文馨
Wen-Xin Chang
論文名稱: 聚苯胺奈米複合材料的製備表徵在超級電容器的應用
Preparation and Characterization of Polyaniline Nanocomposites for Supercapacitor
指導教授: 氏原真樹
Masaki Ujihara
蘇威年
Wei-Nian Su
口試委員: 氏原真樹
Masaki Ujihara
蘇威年
Wei-Nian Su
今榮東洋子
Toyoko Imae
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 57
中文關鍵詞: 聚苯胺超級電容器印刷式導電墨水凝膠電解質
外文關鍵詞: Polyaniline, supercapacitors, printable conductive ink, gel electrolyte
相關次數: 點閱:371下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近來,為了給移動裝置提供穩定的可持續能源,電池和超級電容器等儲能設備的發展逐漸成熟。本研究重點在使用聚苯胺 (PANI) 的超級電容器,並考慮了用於可穿戴超級電容器的PANI奈米複合材料。由於PANI容易形成納米纖維,相互纏繞並引發大分子沉澱,因此添加二氧化矽奈米粒子(直徑:12奈米)作為凝結核,形成具有二氧化矽-PANI殼層結構的球狀奈米粒子。利用 SEM 和 TEM進行表面分析,發現二氧化矽-PANI呈現直徑為 200-300 nm 的球狀聚集體。為了防止PANI過度聚集,在反應溶液中加入保護劑:聚(丙烯酸)(PAA)。PAA的作用與 pH 值有關,即:PAA交聯 PANI在pH 5左右時會形成凝膠;而二氧化矽-PANI顆粒直徑約20 nm的奈米分散體在pH 3以下表現穩定。將二氧化矽-PANI奈米複合材料透過瓊脂糖凝膠固定在不鏽鋼網上,並分析其電化學行為。由於PANI上的表面覆蓋了PAA進而增加了電荷轉移電阻(Rct),但並沒有因此使溶液電阻增加。再者瓊脂糖凝膠中的二氧化矽-PANI 表現出約 100 F/g 的比電容,但二氧化矽-PANI-PAA 奈米複合材料在pH 4的電解質中量測到的比電容從約 40 F/g(含 1 wt.% PAA)降至約 6 F/g(含1.5-2.5 wt.% PAA)。另外觀察到在pH 3或更低的電解質中時,瓊脂糖凝膠會崩解。這說明瓊脂糖凝膠在酸性環境中處於不穩定的狀態,因此需要為可穿戴超級電容器的聚苯胺墨水製備穩定的凝膠電解質進行更深入的研究。


Recently, energy storage devices such as batteries and supercapacitor has increased to stabilize sustainable energies and to use mobile tools. In this study, supercapacitors using polyaniline (PANI) are focused, and PANI nanocomposites for wearable supercapacitors were considered. Since the PANI easily forms nanofibers, which could intertwine each other and precipitate, silica nanoparticles (diameter: 12 nm) were added as template to form spherical nanoparticles with silica-PANI core-shell structure. Using SEM and TEM, the silica-PANI was found to be spherical aggregates with 200-300 nm in diameter. To prevent aggregation, a protection agent, poly(acrylic acid) (PAA) was added in the reaction solution. The role of PAA was related to the pH value: the PAA cross-linked PANI to form gel at pH 5, while the dispersion of small silica-PANI nanoparticles (diameter: ~20 nm) were stabilized at pH 3. The silica-PANI nanocomposites were immobilized by agarose gel on a stainless-mesh, and their electrochemical behaviors were analyzed. The PAA increased the charge transfer resistance due to the surface cover on PANI, but didn't largely increased the solution resistance. While the silica-PANI in agarose gel exhibited the specific capacitance of ~100 F/g, that of silica-PANI-PAA nanocomposites decreased from ~40 F/g (with 1 wt. % PAA) to ~6 F/g (with 1.5-2.5 wt. % PAA) at pH 4. At pH 3 or lower, the agarose gel was decomposed. The agarose gel was not stable in the acidic medium, and therefore further study is required to prepare stable gel electrolyte for the PANI ink for the wearable supercapacitors.

Abstract i 摘要 ii Acknowledgements iii Contents iv List of Figures vi List of Schemes viii List of Tables ix CHAPTER 1. Introduction and Motivation 1 1.1 Classification of Supercapacitors 2 1.2 Materials for Supercapacitors 4 1.3 Preparation of PANI 6 1.4 PANI Application 10 1.5 Motivation to use PANI 12 1.6 Motivation to develop functional ink 13 CHAPTER 2. Experimental Part 14 2.1 Materials 14 2.2 Synthesis of PANI 15 2.3 In-situ polymerization of core-shell silica-PANI nanocomposite 15 2.4 In-situ polymerization of core-shell silica-PANI nanocomposite with PAA 17 2.5 Synthesis of PANI-rGO composites 17 2.6 Preparation of working electrode for electrochemical measurement 18 CHAPTER 3. Instruments and Their Principles 19 3.1 Ultraviolet–visible (UV-vis) spectroscopy 19 3.2 Scanning electron microscope (SEM) and Transmission electron microscope (TEM) 21 3.3 Cyclic Voltammetry (CV) 23 3.4 Galvanostatic charge-discharge (GCD) 24 3.5 Electrochemical impedance spectroscopy (EIS) 26 CHAPTER 4. Results and Discussion 27 4.1 Characterization of PANI 27 4.1.1 UV-vis absorption of silica-PANI core-shell nanoparticles 27 4.1.2 Morphology of silica-PANI core-shell nanoparticles 29 4.1.3 XRD analysis of PANI nanocomposites 40 4.2 Electrochemical properties of PANI nanocomposites 42 4.2.1 Electrochemical Performance of PANI nanocomposite Electrode 44 CHAPTER 5. Conclusions 51 References 53

1. Wang, G.; Zhang, L.; Zhang, J., A Review of Electrode Materials for Electrochemical Supercapacitors. Chem Soc Rev 2012, 41, 797-828.
2. Zhao, C.; Zheng, W., A Review for Aqueous Electrochemical Supercapacitors. Frontiers in Energy Research 2015, 3, 23.
3. Li, H.; Liang, J., Recent Development of Printed Micro-Supercapacitors: Printable Materials, Printing Technologies, and Perspectives. Adv Mater 2020, 32, e1805864.
4. Qiu, B.; Wang, J.; Li, Z.; Wang, X.; Li, X., Influence of Acidity and Oxidant Concentration on the Nanostructures and Electrochemical Performance of Polyaniline During Fast Microwave-Assisted Chemical Polymerization. Polymers (Basel) 2020, 12, 310.
5. Yu, A.; Chabot, V.; Zhang, J., Electrochemical Supercapacitors for Energy Storage and Delivery; CRC Press, 2017.
6. Rahman, M. S.; Islam, M. M.; Islam, M. S.; Zaman, A.; Ahmed, T.; Biswas, S.; Sharmeen, S.; Rashid, T. U.; Rahman, M. M., Morphological Characterization of Hydrogels. In Cellulose-Based Superabsorbent Hydrogels, 2019; pp 819-863.
7. Winter, M.; Brodd, R. J., What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews 2004, 104, 4245-4270.
8. Permatasari, F. A.; Irham, M. A.; Bisri, S. Z.; Iskandar, F., Carbon-Based Quantum Dots for Supercapacitors: Recent Advances and Future Challenges. Nanomaterials (Basel) 2021, 11.
9. Zhang, Y. Performance and Ageing Quantification of Electrochemical Energy Storage Elements for Aeronautical Usage. 2019.
10. Biesheuvel, P. M.; Porada, S.; Dykstra, J. E., The Difference between Faradaic and Non-Faradaic Electrode Processes. arXiv: Chemical Physics 2018, 1809.02930.
11. Brousse, T.; Bélanger, D.; Long, J. W., To Be or Not to Be Pseudocapacitive? Journal of The Electrochemical Society 2015, 162, A5185-A5189.
12. Simon, P.; Gogotsi, Y., Materials for Electrochemical Capacitors. Nat Mater 2008, 7, 845-54.
13. Bryan, A. M.; Santino, L. M.; Lu, Y.; Acharya, S.; D’Arcy, J. M., Conducting Polymers for Pseudocapacitive Energy Storage. Chemistry of Materials 2016, 28, 5989-5998.
14. Kötz, R.; Carlen, M., Principles and Applications of Electrochemical Capacitors. Electrochimica Acta 2000, 45, 2483-2498.
15. Chen, D.; Wang, Q.; Wang, R.; Shen, G., Ternary Oxide Nanostructured Materials for Supercapacitors: A Review. Journal of Materials Chemistry A 2015, 3, 10158-10173.
16. de Levie, R., On Porous Electrodes in Electrolyte Solutions. Electrochimica Acta 1963, 8, 751-780.
17. Zhang, H.; Cao, G.; Yang, Y.; Gu, Z., Capacitive Performance of an Ultralong Aligned Carbon Nanotube Electrode in an Ionic Liquid at 60°C. Carbon 2008, 46, 30-34.
18. Ke, Q.; Wang, J., Graphene-Based Materials for Supercapacitor Electrodes – a Review. Journal of Materiomics 2016, 2, 37-54.
19. Xia, J.; Chen, F.; Li, J.; Tao, N., Measurement of the Quantum Capacitance of Graphene. Nat Nanotechnol 2009, 4, 505-9.
20. Taberna, P. L.; Simon, P.; Fauvarque, J. F., Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors. Journal of The Electrochemical Society 2003, 150.
21. Eftekhari, A., Synthesis of Nanostructured Large Particles of Polyaniline. Journal of Applied Polymer Science 2006, 102, 6060-6063.
22. Wang, H.; Yin, L.; Pu, X.; Yu, C., Facile Charge Carrier Adjustment for Improving Thermopower of Doped Polyaniline. Polymer 2013, 54, 1136-1140.
23. Geethalakshmi, D.; Muthukumarasamy, N.; Balasundaraprabhu, R., Effect of Dopant Concentration on the Properties of Hcl-Doped Pani Thin Films Prepared at Different Temperatures. Optik 2014, 125, 1307-1310.
24. Hu, Z.; Zu, L.; Jiang, Y.; Lian, H.; Liu, Y.; Li, Z.; Chen, F.; Wang, X.; Cui, X., High Specific Capacitance of Polyaniline/Mesoporous Manganese Dioxide Composite Using Ki-H2so4 Electrolyte. Polymers 2015, 7, 1939-1953.
25. Wang, H.; Lin, J.; Shen, Z. X., Polyaniline (Pani) Based Electrode Materials for Energy Storage and Conversion. Journal of Science: Advanced Materials and Devices 2016, 1, 225-255.
26. Song, E.; Choi, J. W., Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing. Nanomaterials (Basel) 2013, 3, 498-523.
27. Boeva, Z. A.; Sergeyev, V. G., Polyaniline: Synthesis, Properties, and Application. Polymer Science Series C 2014, 56, 144-153.
28. Kittel, C., Introduction to Solid State Physics, 2004.
29. Eftekhari, A.; Li, L.; Yang, Y., Polyaniline Supercapacitors. Journal of Power Sources 2017, 347, 86-107.
30. Rasmussen, S. C., The Early History of Polyaniline: Discovery and Origins. Substantia, 1(2). 2017, 11.
31. Stejskal, J.; Kratochvíl, P.; Jenkins, A. D., The Formation of Polyaniline and the Nature of Its Structures. Polymer 1996, 37, 367-369.
32. Chiang, J.-C.; MacDiarmid, A. G., ‘Polyaniline’: Protonic Acid Doping of the Emeraldine Form to the Metallic Regime. Synthetic Metals 1986, 13, 193-205.
33. Chen, X.; Yuan, C. A.; Wong, C. K. Y.; Ye, H.; Leung, S. Y. Y.; Zhang, G., Molecular Modeling of Protonic Acid Doping of Emeraldine Base Polyaniline for Chemical Sensors. Sensors and Actuators B: Chemical 2012, 174, 210-216.
34. Kim, D.; Choi, J.; Kim, J.-Y.; Han, Y.-K.; Sohn, D., Size Control of Polyaniline Nanoparticle by Polymer Surfactant. Macromolecules 2002, 35, 5314-5316.
35. Stejskal, J.; Sapurina, I.; Trchová, M.; Konyushenko, E. N.; Holler, P., The Genesis of Polyaniline Nanotubes. Polymer 2006, 47, 8253-8262.
36. Trchová, M.; Stejskal, J., Polyaniline: The Infrared Spectroscopy of Conducting Polymer Nanotubes (Iupac Technical Report). Pure and Applied Chemistry 2011, 83, 1803-1817.
37. Grover, S.; Goel, S.; Marichi, R. B.; Sahu, V.; Singh, G.; Sharma, R. K., Polyaniline All Solid-State Pseudocapacitor: Role of Morphological Variations in Performance Evolution. Electrochimica Acta 2016, 196, 131-139.
38. Bláha, M.; Trchová, M.; Bober, P.; Morávková, Z.; Prokeš, J.; Stejskal, J., Polyaniline: Aniline Oxidation with Strong and Weak Oxidants under Various Acidity. Materials Chemistry and Physics 2017, 194, 206-218.
39. Patil, B. H.; Gund, G. S.; Lokhande, C. D., Influence of Surfactant on the Morphology and Supercapacitive Behavior of Silar-Deposited Polyaniline Thin Films. Ionics 2014, 21, 191-200.
40. Santiago, E. I.; Pereira, E. C.; Bulhões, L. O. S., Characterization of the Redox Processes in Polyaniline Using Capacitance–Potential Curves. Synthetic Metals 1998, 98, 87-93.
41. Stejskal, J.; Sapurina, I.; Trchová, M.; Konyushenko, E. N., Oxidation of Aniline: Polyaniline Granules, Nanotubes, and Oligoaniline Microspheres. Macromolecules 2008, 41, 3530-3536.
42. Prasad, K. R.; Munichandraiah, N., Electrochemical Studies of Polyaniline in a Gel Polymer Electrolyte. Electrochemical and Solid-State Letters 2002, 5, 4.
43. Dong, Y. Z.; Han, W. J.; Choi, H. J., Polyaniline Coated Core-Shell Typed Stimuli-Responsive Microspheres and Their Electrorheology. Polymers (Basel) 2018, 10, 299.
44. Wen, W.; Huang, X.; Yang, S.; Lu, K.; Sheng, P., The Giant Electrorheological Effect in Suspensions of Nanoparticles. Nat Mater 2003, 2, 727-30.
45. Lee, P. Y.; Costumbrado, J.; Hsu, C. Y.; Kim, Y. H., Agarose Gel Electrophoresis for the Separation of DNA Fragments. J Vis Exp 2012, e3923.
46. Ayad, M.; El-Hefnawy, G.; Zaghlol, S., Facile Synthesis of Polyaniline Nanoparticles; Its Adsorption Behavior. Chemical Engineering Journal 2013, 217, 460-465.
47. Cabuk, M.; Yavuz, M.; Unal, H. I., Electrokinetic Properties of Biodegradable Conducting Polyaniline-Graft-Chitosan Copolymer in Aqueous and Non-Aqueous Media. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 460, 494-501.
48. Jang, J.; Ha, J.; Lim, B., Synthesis and Characterization of Monodisperse Silica-Polyaniline Core-Shell Nanoparticles. Chem Commun (Camb) 2006, 1622-4.
49. 林鴻儒, 神奇的水膠. 科學發展 2018, 66-72.
50. Mutalib, T. N. A. B. T. A.; Tan, S. J.; Foo, K. L.; Liew, Y. M.; Heah, C. Y.; Abdullah, M. M. A. B., Properties of Polyaniline/Graphene Oxide (Pani/Go) Composites: Effect of Go Loading. Polymer Bulletin 2020, 78, 4835-4847.
51. Gui, D.; Liu, C.; Chen, F.; Liu, J., Preparation of Polyaniline/Graphene Oxide Nanocomposite for the Application of Supercapacitor. Applied Surface Science 2014, 307, 172-177.
52. N., B. C., Fundamentals of Molecular Spectroscopy: New York, 1983.
53. Kaifer, A. E., Fundamentals of Analytical Chemistry. (Skoog, Douglas A.; West, Donald M.; Hollar, James F.). ACS Publications: 1992.
54. Carter, C. B.; Williams, D. B., Transmission Electron Microscopy: Diffraction, Imaging, and Spectrometry; Springer, 2016.
55. Oh, M.; Kim, S., Preparation and Electrochemical Characterization of Polyaniline/Activated Carbon Composites as an Electrode Material for Supercapacitors. J Nanosci Nanotechnol 2012, 12, 519-24.
56. Elgrishi, N.; Rountree, K. J.; McCarthy, B. D.; Rountree, E. S.; Eisenhart, T. T.; Dempsey, J. L., A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education 2017, 95, 197-206.
57. Lee, K.-T.; Wu, N.-L., Manganese Oxide Electrochemical Capacitor with Potassium Poly(Acrylate) Hydrogel Electrolyte. Journal of Power Sources 2008, 179, 430-434.
58. Ban, S.; Zhang, J.; Zhang, L.; Tsay, K.; Song, D.; Zou, X., Charging and Discharging Electrochemical Supercapacitors in the Presence of Both Parallel Leakage Process and Electrochemical Decomposition of Solvent. Electrochimica Acta 2013, 90, 542-549.
59. Macdonald, J. R., Impedance Spectroscopy. In Annals of Biomedical Engineering, 1992.
60. Yu, X.; Tanaka, A.; Tanaka, K.; Tanaka, T., Phase Transition of a Poly(Acrylic Acid) Gel Induced by Polymer Complexation. The Journal of Chemical Physics 1992, 97, 7805-7808.
61. Yan, J.; Wei, T.; Fan, Z.; Qian, W.; Zhang, M.; Shen, X.; Wei, F., Preparation of Graphene Nanosheet/Carbon Nanotube/Polyaniline Composite as Electrode Material for Supercapacitors. Journal of Power Sources 2010, 195, 3041-3045.

QR CODE