簡易檢索 / 詳目顯示

研究生: 王威程
Wei-Cheng Wang
論文名稱: 六自由度波長調制外差光柵干涉儀之開發
Development of six-degree-of-freedom wave-length modulated heterodyne grating interferometer
指導教授: 謝宏麟
Hung-lin Hsieh
口試委員: 陳品銓
Pin-chuan Chen
李朱育
Ju-yi Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 68
中文關鍵詞: 干涉儀波長調制光柵干涉術六自由度
外文關鍵詞: interferometer, wave-length modulated, grating interferometry, six-degree-of-freedom
相關次數: 點閱:243下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一套創新的波長調制外差光柵干涉儀,用以進行六自由度位移及角位移量測。此套干涉儀系統具備外差干涉術、麥克森干涉術,以及光柵干涉術的優點。
我們藉由調整雷射二極體的輸入電流來調製其輸出波長,進而得到外差光源,當此外差光源正向入射至一半穿透式光柵時,會分別產生反射光及穿透光。藉由光路設計使反射光形成麥克森干涉儀架構,用以進行面外位移量測。穿透光經過光柵後產生正負一階繞射光,將此兩道正負一階繞射光疊合後形成光柵干涉儀架構,用以進行面內位移量測。藉由分光技術的運用,我們可以在共用一個光源的條件下建構三組獨立的偵測架構,每一組偵測架構都具備面外及面內位移量測的能力。透過比對每兩組偵測架構間的量測結果,即可獲得角位移訊息。
為了驗證本干涉儀的可行性,我們進行了各種不同的量測實驗。由實驗結果可知,本干涉儀之位移及角位移量測解析度可達50 nm及 2 rad,面內位移及面外位移量測靈敏度分別為0.36°/nm 及1.03°/nm。實驗結果證明本干涉儀具備六自由度位移及角位移量測能力,同時亦具備高穩定性。


In this study, a novel wavelength-modulated heterodyne grating interferometer is proposed for six-degree-of-freedom (6-DOF) displacement and angular displacement measurements. This proposed interferometer has the advantages of heterodyne interferometry, Michelson interferometry, and grating interferometry.
To obtain a heterodyne light source, we adjust the laser diode injection current to modulate the emitted wavelength. When the heterodyne light beam perpendicularly enters a semi-transmission type grating, part of the light beam will be reflected while the other part will pass through. The detection configuration of Michelson interferometer can be constructed by using the reflected beam for out-of-plane displacement measurement. The +1st and -1st order diffraction beams will be formed as the light passes through the grating. The grating interferometry is constructed to detect the in-plane displacement by combining the +1st and -1st order diffraction beams. Furthermore, three identical detection configurations sharing the same light source can be obtained by using the technique of dividing method. Each detection configuration has the ability to sense in-plane and out-of-plane displacement information. Angular displacement information can then be acquired by comparing the displacement measurement result between each two detection configurations.
In order to verify the feasibility of our proposed interferometer, different kinds of experiments have been performed. The experimental results show that the displacement and angular displacement resolutions of the proposed interferometer can achieve 50 nm and 2 rad respectively. The sensitivities of the in-plane and out-of-plane displacements are about 0.36°/nm and 1.03°/nm respectively. The experimental results demonstrate that the proposed interferometer has the ability to measure 6-DOF displacement and angular displacements while maintaining high system stability

目錄 摘要 III Abstract III 致謝 III 目錄 III 圖目錄 III 表目錄 III 符號表 III 第一章 緒論 3 1.1 研究背景 3 1.2 文獻回顧 3 1.2.1外差干涉術文獻回顧 3 1.2.2 光柵干涉術文獻回顧 3 1.2.3 多自由度位移量測干涉儀文獻回顧 3 1.3 研究目的 3 1.4 論文架構 3 第二章 基礎理論 3 2.1外差干涉術 3 2.1.1 利用旋轉波片產生外差光源 3 2.1.2 利用電光調變器產生外差光源 3 2.1.3 利用聲光調變器產生外差光源 3 2.1.4 利用賽曼雷射產生外差光源 3 2.2波長調制外差干涉術 3 2.2.1 雷射二極體 3 2.2.2 波長調制外差光源 3 2.3麥克森干涉術 3 2.4光柵干涉術 3 2.4.1 光柵都卜勒效應引入相位變化 3 2.4.2 光柵干涉術 3 第三章 系統架構及原理 3 3.1系統架構 3 3.2 波長調制外差光源系統 3 3.3 面外位移量測系統-波長調制外差麥克森干涉儀 3 3.4 面內位移量測系統-波長調制外差光柵干涉儀 3 3.5旋轉角量測原理 3 3.5.1偏轉角(θz,Yaw)量測原理 3 3.5.2傾斜角(θx,Pitch)量測原理 3 3.5.3滾轉角(θy,Roll)量測原理 3 3.6 相位解調演算法 3 第四章 實驗結果與討論 3 4.1 實驗設計 3 4.1.1 150 μm 位移量測結果(X、Y、Z軸) 3 4.1.2 50 μm 位移量測結果(X、Y、Z 軸) 3 4.1.3 1 μm 位移量測結果(X、Y、Z 軸) 3 4.1.4 500 nm 位移量測結果(X、Y、Z 軸) 3 4.1.5 150 μrad 位移量測結果(傾斜角、滾轉角、偏轉角) 3 4.1.6 50 μrad 位移量測結果(傾斜角、滾轉角、偏轉角) 3 4.1.7 10 μrad 位移量測結果(傾斜角、滾轉角、偏轉角) 3 4.1.8 5 μrad 位移量測結果(傾斜角、滾轉角、偏轉角) 3 4.2 穩定度實驗 3 4.3 重複性實驗 3 4.4 系統靈敏度 3 第五章 誤差分析 3 5.1系統隨機誤差 3 5.1.1 環境誤差 3 5.1.2 環境溫度誤差 3 5.2 光柵所造成之對位誤差 3 5.2.1 光柵偏轉角誤差對於面內位移量測之影響 3 5.2.2 光柵偏轉角誤差對於滾轉角量測之影響 3 5.2.3 光柵傾斜角誤差對於面內位移量測之影響 3 5.2.4 光柵滾轉角誤差對於面內位移量測之影響 3 5.3 光程差改變對於面外位移量測系統造成之誤差 3 第六章 結論未來展望 3 6.1結論 3 6.2未來展望 3 參考文獻 3

[1] G. Lerondel, A. Sinno, L. Chassagne, S. Blaize, P. Ruaux, A. Bruyant, S. Topcu, P. Royer, and Y. Alayli, "Enlarged near-field optical imaging," Journal of Applied Physics, Vol. 106, No. 044913, pp. 044913-044914 (2009)
[2] A. Sinno, P. Ruaux, L. Chassagne, S. Topcu, Y. Alay, G. Lerondel, S. Blaize, A. Bruyant, and P. Royer, "Enlarged atomic force microscopy scanning scope: Novel sample-holder device millimeter range," Review of Scientific Instruments, Vol. 78, No.095107, pp.1-7 (2007)
[3] C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," Journal of Vacuum Science & Technology, Vol. B, No. 19, pp. 2335-2341 (2001)
[4] L. F. Johnson, G. W. Kammlott, and K. A. Ingersoll, "Generation of periodic surface corrugations," Journal of Applied Optics, Vol. 17, No. 8, pp. 1165-1181 (1978)
[5] D. E. Duffy, "Moire Gauging of In-Plane Displacement Using Double Aperture Imaging," Journal of Applied Optics, Vol. 11, No. 8, pp.1778-1781 (1972)
[6] Y. Niwa, K. Arai, A. Ueda, M. Sakagami, N. Gouda, Y. Kobayashi, Y. Ymada, T. Yano, “Long-term stabilization of a heterodyne metrology interferometer down to a noise level of 20 pm over an hour,” Journal of Applied Optics, Vol. 48, No. 32, pp. 6105-6110 (2009)
[7] K.N. Joo, J.D. Ellis, J.W. Spr, “Simple heterodyne laser interferometer with subnanometer periodic errors,” Journal of Optics Letters, Vol. 34, No. 3, pp. 386-388 (2009)
[8] K.N. Joo, J.D. Ellis, E.S. Buise, J.W. Spronck, R.H. Munnig Schmidt “High resolution heterodyne interferometer without detectable periodic nonlinearity,” Journal of Optics Express, Vol. 18, Issue 2, pp. 1159-1165 (2010)
[9] P.Y. Chien, Y.S. Chang, M.W. Chang, “Distance and velocity detection based on a deep sinusoidal phase-modulated interferometer,” Journal of Applied Optics, Vol. 34, No. 28, pp. 6373-6375 (1995)
[10] C.M. Wu, “Heterodyne interferometric system with subnanometer accuracy for measurement of straightness,” Journal of Applied Optics, Vol. 43, No. 19, pp. 3812-3816 (2004)
[11] H.K. Teng, K.C. Lang, “Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression,” Journal of Optics Communications, Vol. 280, No. 1, pp. 16–22 (2007)
[12] M. Aketagawa, M. Madden, S. Uesugi, T. Kumagai, Y. Maeda, E. Okuyma, “Spindle error motion measurement using concentric circle grating and phase modulation interferometers,” Proceedings of Society of Photo-Optical Instrumentation Engineers, Beijing, China, pp. 85630C-1–85630C-10 (2012)
[13] A. Taubner, H. V. MArtens, “Measurement of angular accelerations, angular velocities and rotation angles by grating interferometry,” Journal of Measurement, Vol. 24, No. 1, pp. 21-32 (1998)
[14] J. Dhanotia, S. Prakash, S. Rana, O. Sasaki “Slope measurement of bent plates using double grating shearing interferometry,” Journal of Applied Optics, Vol. 50, No. 18, pp. 2958-2963 (2011)
[15] F. Lei, L.K. Dang, “Measuring the focal length of optical systems by grating shearing interferometry,” Journal of Applied Optics, Vol. 33, No. 28, pp. 6603-6608 (1994)
[16] C. K. Lee, C. C. Wu, S. J. Chen, L. B. Yu, Y. C. Chang, Y. F. Wang, and W. J. Wu, “Design and construction of linear laser encoders that possess high tolerance of mechanical runout,” Journal of Applied Optics, Vol. 43, No. 31, pp. 5754-5762 (2004)
[17] H.L. Hsieh, J.Y. Lee, W.T. Wu, J.C. Chen, R. Deturche, G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Journal of Measurement Science and Technology, Vol. 21, No. 11, pp. 1–9 (2010)
[18] C.L. Chu, C.H. Lin, K.C. Fan, “Two-dimensional optical accelerometer based on commercial DVD pick-up head,” Journal of Measurement Science Technology, Vol. 18, No. 1, pp. 265–274 (2007)
[19] A. Kimura, W. Gao, W. Kim, K. Hosono, Y. Shimizu, L. Shi, L. Zeng, “A sub-nanometric three-axis surface encoder with short-period planar gratings for stage motion measurement,” Journal of Precision Engineering, Vol. 36, No. 4, pp. 576–585 (2012)
[20] K.C. Fan, M.J. Chen, “A 6-degree-of-freedom measurement system for the accuracy of X-Y stages,” Journal of Precision Engineering, Vol. 24, No. 1, pp. 15-23 (2000)
[21] H.L. Hsieh, J.C. Chen, G. Lerondel, J.Y. Lee, “Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer,” Journal of Optics Express, Vol. 19, No. 10, pp. 9770-9782 (2011)
[22] H.L. Huang, C.H. Liu, W.Y. Jywe, M.S. Wang, T.H. Fang “Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage,” Journal of Review of Scientific instruments, Vol. 78, pp. 066103–066103-3 (2007)
[23] H.L. Hsieh, S.W. Pan, “Three-degree-of-freedom displacement measurement using grating-based heterodyne interferometry,” Journal of Applied Optics, Vol. 52, No. 27, pp. 6840–6848 (2013)
[24] 盧洺霈,「反射式準共光程外差光柵干涉儀應用於長行程精密定位技術之研究」,碩士論文,國立中央大學,桃園 (2010)。
[25] T.C. Yu, Y.L. Lo, ” A Novel Heterodyne Polarimeter for the Multiple-Parameter Measurements of Twisted Nematic Liquid Crystal Cell Using a Genetic Algorithm Approach,” Journal of Lightwave Technology, Vol. 25, No. 3, pp. 946-951 (2007)
[26] 林坤億「波長調制外差散班干涉術之研究」,碩士論文,國立中央大學, 桃園 (2008)。
[27] 李貴宇,「波長調制外差式光柵干涉儀之研究」,碩士論文,國立中央大學,桃園 (2007)。
[28] 陳思均,「波長調制外差散班干涉術應用於角度量測之研究」,碩士論文,國立中央大學,桃園 (2012)。

QR CODE