簡易檢索 / 詳目顯示

研究生: 張明宗
Ming-Tsung Chang
論文名稱: 水性聚氨酯分子結構設計在織物消臭及機械性能之研究
Effects of Molecular Structure of Waterborne Polyurethane on the Deodorization and Physical Properties of its Coated Fabrics
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 楊銘乾
李貴琪
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 137
中文關鍵詞: 水性聚氨酯羧酸基聚乳酸泡沫塗佈
外文關鍵詞: Waterborne Polyurethane, Carboxylic acid, Polylactides, Foam Coating
相關次數: 點閱:248下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
本研究利用水性聚氨酯的分子結構設計,提升織物之消臭及機械性,透過預聚物混成改質在反應過程製備中導入羧酸(-COOH)和側鏈的EO(ethylene oxide)官能基組成之特殊構造水性聚氨酯(WPU)樹脂。再將此WPU浸塗在織物上之後,其高分子官能基經熱處理後進行架橋反應產生化學鍵,可固定於纖維表面,並賦於其加工織物具有吸附氨氣及酸氣之除臭功效,並且由於這些官能基的存在,也顯示出良好的洗滌耐久性。氨氣透過WPU上的羧酸基團酸鹼中和形成有機鹽類,而酸氣與EO基團形成氫鍵而吸附。本研究利用傅立葉紅外光譜(FT-IR)證明WPU在織物上浸漬吸附之前後的羧酸和EO基團的官能基,以及加工織物的除臭性能與WPU分子鏈上存在的官能基含量有關,經掃描電子顯微鏡(SEM)分析顯示其加工織物在洗滌5次後能仍然具的洗滌耐久性和除臭性能,WPU顆粒仍然牢固地粘附在織物上,由FTIR顯示結果更多的側鏈EO基團會有更多的醋酸分子被吸附,而且聚合物鏈中更多的-COOH基團,會吸附更多的氨分子。
在提升織物之機械物性方面,本研究利用WPU對於PLA織物進行加工處理之物性探討,聚乳酸(PLA)織物具有舒適性及高結晶特性,也是一種環保材料。但由於其高分子線性分子結構,與市售產品如PET或尼龍相比,PLA相對脆弱。因此透過水性聚氨酯(WPU)改質,從而提高PLA織物的機械性能。使用各種不同之多元醇如聚四氫呋喃(PTMG),聚己內酯(PCL)和聚碳酸酯(PC)等,並在本研究中設計各種不同NCO/OH mole比。當PLA織物浸塗在各種改質之WPU中進行加工處理時,發現織物的斷裂強度增加,而伸長率降低。特別以PUD50PC配方之加工織物之斷裂強度最為顯著,其強度增加了80 %。此外,與PLA纖維原布相比,PUD50PC改質PLA纖維之耐磨性顯著提高了約6倍。 由SEM分析也表明,在水性PU加工處理後,PLA纖維與水性PU分子緊密結合,提高了PLA織物的斷裂強度。
除此之外,也探討以聚酯纖維針織物為基材,進行水性聚氨酯(WPU)塗佈加工試驗,增加織物之防水、透濕、透氣、及耐水壓等功能,本研究採用運用逆向差速轉移泡沫塗佈試驗機設備,改變雕刻輪及塗佈速度,評估織物之防潑水、透濕性及耐水壓等性能,結果顯示30次洗滌後,加工織物之防水性能受到水分子親水性的影響,透氣率隨著速比和塗佈速度的增加而降低,依照數據分析,塗佈速度與雕刻輪速度之比越大,織物上的WPU樹脂含量越多,透氣性和透濕性將下降,從SEM可以觀察到塗佈速度越大,雕刻輪的速度越大,WPU樹脂層越厚,WPU樹脂會滲透到纖維內部結構中,使纖維固定,而提升耐水壓性能。


Abstract
In this study, waterborne polyurethane (WPU), consisted of carboxylic acid and side-chained EO (ethylene oxide) functional groups, were prepared using a prepolymer ion-hybrid reaction process. After dipping the WPU on a fabrics, the dipped fabrics show promising deodorization properties for both basic and acidic odors and with good wash durability. The good deodorization properties were attributed to the presence of carboxylic acid and side-chained EO characteristic groups. Basic odors were neutralized via carboxylic acid groups on the WPU, whereas acidic odors were absorbed by the EO groups through hydrogen bonding. Fourier transform infrared spectroscopy (FTIR) was used to examine the formation of functional groups of the WPU dipped fabrics, such as carboxylic acid and EO groups The deodorization properties of the dipped fabrics were associated with the content of the functional groups existing on the WPU molecular chain. Scanning electron microscope (SEM) analysis revealed WPU particles were still strongly bonded onto the fabrics and demonstrated that the dipped fabrics had a promising wash durability on the deodorization properties after 5 times of laundering. The more side-chain EO groups, there were more acetic acid molecules absorbed; while more COOH groups, more ammonium molecules were absorbed. The results show that the synthesized WPUs possess very highly washed durability.
On the other hand, modified WPU was used to improve the breaking strength of the WPU coated PLA fabrics by changing the molecular structure of WPU. Polylactide (PLA) is a type of environmental friendly material. PLA fabrics feature excellent performance in terms of texture, comfort, curling effect, crystallinity, and transparency. However, because of its aliphatic polyester structure, PLA is relatively fragile as compared with the commercially available products such as PET or Nylon. This study adopted WPU to modify the surface of PLA fabrics, thereby enhancing the fabrics’ mechanical properties. Various polyols such as polytetrahydrofuran (PTMG), polycaprolactone diol (PCL), and polycarbonates diol (PC) were used and various NCO/OH molar ratios were designed in this study. As the PLA fabric was processed by dipping in various PU dispersions, it was found that the breaking strength of the fabric was increased, while its elongation at breakage decreased. Particularly, the breaking strength of the fabric modified by PUD50PC containing 50 weight percent of PC and two other polyols was the most prominent, showing 80 % increase in strength. Furthermore, the abrasion resistance of the PUD50PC-modified PLA fabric showed approximately 6 fold increasing as compared to the plain PLA fabric. SEM images revealed thatthe PLA fibers were bonded tightly with the WPU molecules and resulted in increasing of the breaking strength of the PLA fabrics.
In the last charpter, the coating process of WPU onto polyester fabrics by foam coating method was studied. The higher ratio between the coating roller speed and the gravure roller, the more water-repellent foam coating was coated on fabrics. This makes fabrics’ water-repellency, air permeability, and moisture permeability obviously much lower, especially the thicker coating layer leads to lower water-repellency and moisture permeability after washing for 30 times based upon hydrophilic property of films.

Keywords: Waterborne Polyurethane, Carboxylic acid, Polylactides, Foam Coating

Contents 博士學位指導教授推薦書 I 博士學位委員審定書 II 摘要 I Abstract III 致謝 V Contents VII Symbol Index XIII List of Tables XIV List of Figures XVI Chapter 1 1 Introduction 1 1.1 The development of polyurethane 2 1.1.1 Polyurethane Structure 3 1.1.2 Effect of Soft Segments on Polyurethane Performance 5 1.1.3 Effect of Hard Segments on Polyurethane Properties 6 1.2 Waterborne Polyurethane (WPU) Introduction and Type 7 1.2.1 Cationic WPU 8 1.2.2 Anionic WPU 9 1.2.3 Non-ionic WPU 9 1.2.4 Hybrid WPU 10 1.3 Composition and Dispersion Mechanism of Waterborne Polyurethane 11 1.3.1 Isocyanate 13 1.3.2 Polyol 15 1.3.3 Chain Extender 17 1.3.4 Neutralizer 18 1.3.5 Catalyst 19 1.4 Waterborne Polyurethane Main Manufacturing Methods 21 1.4.1 Solvent or Acetone Process 21 1.4.2 Prepolymer Ionomer Mixing Process 22 1.5 The Source of the Smell 23 1.6 Deodorizing Methods 26 1.6.1 Deodorization Methods and Mechanisms 26 1.6.2 Comparing of Deodorizing Performance 26 1.7 Introduction to Polylactic Acid (PLA) 29 1.7.1 Characteristics of Polylactic Acid Fibers 29 1.7.2 Biodegradability of Polylactic Acid Fibers 33 1.7.3 Applications of Polylactic Acid Fibers 33 1.8 Fabric Finishing 36 1.9 Research Motivation and Objective 40 Chapter 2 48 Waterborne Polyurethane Molecular Structure Designed and its Acetic Acid and Ammonia Absorption Efficiency 48 2.1 Introduction 49 Basic Theory 51 2.2 Experimental 53 2.2.1 Materials 53 2.2.2 Experiment Flow Chart 54 2.2.3 Reaction Design 54 2.3 Results and Discussion 57 2.3.1 FT- IR Analysis of the PUD Films 57 2.3.2 Deodorization Tests of the Samples 59 2.3.3 The PUD Dipped Fabrics: Deodorization Result Analyses before and after Laundry 60 2.3.4 Wash Performance Analysis 67 2.4 Summary 69 References 72 Chapter 3 73 Effects of NCO/OH Ratios and Polyols during Polymerization of Waterborne Polyurethanes on Polyurethane Modified Polylactide Fabrics 73 3.1 Introduction 74 3.2 Experimental 77 3.2.1 Materials 77 3.2.2 Characterization 77 3.2.3 Preparation of Waterborne Polyurethane 79 3.2.4 PLA Fabrics Modified by PUD 81 3.3 Results and discussion 84 3.3.1 Structural Identification 84 3.3.2 Thermal Gravimetric Analysis 86 3.3.3 Glass Transition Temperature for Polyurethanes and PLA Fabric 88 3.3.4 Mechanical Properties 89 3.3.5 NCO/OH Ratio and the Average Particle Size 94 3.3.6 SEM Analysis of PU-modified PLA Fabric 95 3.4 Summary 100 References 101 Chapter 4 103 Effects of coating speed on the physical characteristics of microfiber PU-processed Fabrics 103 4.1 Introduction 104 Basic Theory 105 4.2 Experimental 110 4.2.1 Materials 110 4.2.2 Equipments 112 4.2.3 Experimental Flow Chart 115 4.2.4 Experimental Method 116 4.3 Results and Discussion 117 4.3.1 The effects of coating speed and gravure-roller-speed ratio on water repellency 117 4.3.2 The effects of coating speed and gravure-roller-speed ratio on air permeability (air permeability testing without washing and after washing) 118 4.3.3 The effects of coating speed and gravure-roller-speed ratio on moisture permeability 120 4.3.4 The effects of coating speed and gravure-roller-speed ratio on water-pressure resistance 121 4.3.5 External appearance analysis of waterborne 123 PU-processed fabric samples 123 4.4 Summary 129 References 131 Chapter 5 133 Conclusions 133

References
1. M. G. Lu, J. Y. Lee, M. J. Shim, and S. W. Kim, “Synthesis and properties of anionic aqueous polyurethane dispersions,” J. Appl. Polym. Sci.,86, 14,3461–3465 (2002)
2. G. Oertel, Polyurethane Handbook, Hanser Publisher, Munich Vienna New York, (1985)
3. C. Hepburn, Polyurethane Elastomers, Applied science publishers, London, England, (1982)
4. C.S. Schollenberger, Polyurethane Technology Ed., Bruin, P.F., Inter science publishers, New York, 197 (1979)
5. D. Bontinck, M. Tielemans, J.M. Loutz, A. Vandersmissen, L. De Koninck, Aqueous polyurethane compositions, United States patent, 5,541,251 (1996)
6. Y. Chen, Y.L. Chen, Aqueous dispersions of polyurethane anionomers: Effects of counteraction, Journal of applied polymer Science,46, 435-443( 1992)
7. J. Julia, D. Salvatella and J. Lope, Aqueous polyurethane dispersions for adhesive applications, Adhesive age, 37, 26-31. (1994)
8. R. Bonart, “Thermoplastic elastomers,” Polymer (Guildf).,20,11, 1389–1403 (1979)
9. T.L. Wang, T.H. Hsieh, Effect of polyol structure and molecular weight on the thermal stability of segmented poly(urethaneureas)Original Research Article, Polymer degradation and stability, 55, 95-102. (1997)
10. F.M.B. Coutinho, M.C. Delpech, Degradation profile of films cast from aqueous polyurethane dispersions , Polymer degradation and stability, 70, 49-57. (2000)
11. M. Xu, W. J. MacKnight, C. H. Y. Chen, and E. L. Thomas, “Structure and morphology of segmented polyurethanes: 1. Influence of incompatability on hard-segment sequence length,” Polymer (Guildf)., 24, 10,1327–1332, (1983)
12. K. Tharanikkarasu and B. K. Kim, “Modification of aqueous polyurethane dispersions via tetraphenylethane iniferters,” J. Appl. Polym. Sci., , 73,14, 2993–3000. (1999)
13. R.E. Tirpak, R.L. Cline, Aqueous polyurethane dispersions and adhesives based thereon, United States patent, , PN: 5,124,400 (1992)
14. T.H. Zhang, Cohesive stretch bandages, United States patent, PN: 5,692,937( 1997)
15. S.L. Cooper, A.V. Tobolsky, Properties of linear elastomeric polyurethanes, Journal of applied polymer science, 10, 1837-1844. (1966)
16. X. Wei, X.H. Yu, Synthesis and properties of sulfonated polyurethane ionomers with anions in the polyether soft segments, Journal of polymer science part B: Polymer Physics, 35 , 225-232.(1997)
17. P. Markusch, Stable, Colloidal, Aqueous dispersions of cross-linked urea-urethane polymers and their method of production, United States patent, PN: 4,408,008.(1983)
18. G.C. Marx, D.F. Caulfield, S.L. Cooper, Morphology of ionomers, Macromolecules,6,344-353(1973)
19. A. Eisenber, B. Hard, R.B. More, A new multiplet-cluster model for the morphology of random ionomers, Macromolecules, 23, 4098-4107 (1990)
20. W.C. Chan, S.A. Chen, Polyurethane ionomers: effects of emulsification on properties of hexamethylene diisocyanate-based polyether polyurethane cationomers, Polymer, , Elsevier,29,1995-2001(1998)
21. K.C. Frisch and D. Klempner, Advances in urethane science and technology Vol14, Technomic publishing Co., Lancaster, PA, (1997)
22. S.B. Clough, N.S. Schneider, Structural studies on urethane elastomers, Journal of macromolecular science Part B: Physics, 2, 553-566( 1968)
23. D. Nissen, R.A. Markovs, Aromatic diamines as chain extenders in rim urethane elastomers, Journal of elastomers and plastics, , 15, 96-112 (1983)
24. J.W. Britain, P.G. Gemeinhardt, Catalysis of the isocyanate-hydroxyl reaction, Journal of applied polymer science, 4,207-211. (1960)
25. M.J. Dochniak, Anionic water dispersed polyurethane polymer for improved coatings and adhesives, United States patent, PN: 5,354,807 (1993)
26. G. Gündüz, M. Gafaroğullari, Highly branched and tartaric acid-based water-borne resins, Journal of applied polymer science, 80, 604-612(2001)
27. M.S. Sánchez–Adsuar, E. Papon, J.J. Villenave, Properties of thermoplastic polyurethane elastomers chemically modified by rosin, Journal of applied polymer science, 82, 3402-3408(2001)
28. B.K. Kim, Y.M. Lee, Aqueous dispersion of polyurethanes containing ionic and nonionic hydrophilic segments, Journal of applied polymer science, 54, 1809-1815(1994)
29. B.K. Kim, J.C. Lee, Waterborne polyurethanes and their properties, Journal of polymer science part A: polymer chemistry, 34, 1095-1104. (1996)
30. E.M. Kim, J.H. Choi, Preparation of novel iron phthalocyanine containing reactive groups and its deodorizing property on cellulose, Textile coloration and finishing, 25, 247-253(2013)
31. H. Zhang, C. Ge, C. Zhu, Y. Li, W. Tian ,D. Cheng, Z. Pan, Deodorizing Properties of Photocatalyst Textiles and Its Effect Analysis , Physics Procedia ,240-244(2012 )
32. S. Haze, Y. Gozu, S. Nakamura, Y. Kohno, K. Sawano, H. Ohta, K. Yamazaki, 2-Nonenal newly found in human body odor tends to increase with aging, Journal of investigative dermatology, 116, 520-524(2001)
33. R. E. Lee, Scanning electron microscopy and X-ray microanalysis, PTR Prentice Hall, New Jersey(1993)
34. Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng,1,276-277 (2000).
35. Compatibilization in bio-based and biodegradable polymer blends,B. Imre, B. Pukánszky European Polymer Journal ,49,1215–1233 (2013).
36. Mathew AP, Oksman K, Sain M.The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylacticacid. J Appl Polym Sci, 1,5-10 (2006).
37.“INVISTA. http://thermocool.invista.com/.
38. G. Montaudo, E. Scamporrino, and D. Vitalini, “Intumescent Flame Retardants for Polymers . II .* The Polypropylene -Ammonium Polyp hosp hat e- Polyurea System, 21, 3361–3371(1983)
39. R. Morent, N. De Geyter , Improved textile functionality through surface modifications Woodhead Publishing Series in Textiles, 3–16(2011)
40. M.S. Yen, J.C. Chen, C.C. Chen, Degree of crosslinking and physical properties of dimethyloldihydroxyethyleneurea/acrylic acid crosslinked cotton fabrics after treatment with various metallic salts, Journal of applied polymer science,97, 584-594.( 2005)
41. S.C. Wang, P.C. Chen, K.N. Chen, Modifications of aqueous-based polyurethane, The chinese chemical society, 62, 4, 461-472(2004)
42. M.J. Dochniak,U. S. Patent, 5354807(1993).
43. D.L. Cho, C.N. Choi, H.J. Kim, A.K. Kim, J.H. Go, J. Appl. Polym. Sci., 82, 839 (2001).
44. A. Zare, M. Morshed, R. Bagheri, and K. Karimi, Fibers Polym., 11, 1783 (2013).
45. Y. Hao, H. Yang, H. Zhang, G. Gao, and L. Dong, Fibers Polym., 16, 2519 (2015).
46. C.-T. Wang, Master's thesis, NCU, Taoyuan, 2008.
47. T.-C. Tsai, Master's thesis, NCU, Taoyuan, 2011.
48. H. T. Oyama, Polymer, 50, 747 (2009).
49. W. Dong, B. Zou, Y. Yan, P. Ma, and M. Chen, Int. J. Mol. Sci, 14, 20189 (2013).
50. S. Wang, H. Xiang, X. Wen, Z. Zhou, and M. Zhu, Mater. Sci. Forum, 789, 117 (2014).
51. H. Liu and J. Zhang, J. Polym. Sci., Part B: Polym. Phys, 49, 1051 (2011).
52. T. Hussain, M. Tausif, and M. Ashraf, J. Cleaner Prod., 108, 476 (2015).
53. A. Khoddamia, O. Avinc, and S. Mallakpour, Prog. Org. Coat., 67, 311 (2010).
54. A. Khoddamia, O. Avinc, and F. Ghahremanzadeh, , Prog. Org. Coat., 72, 299 (2011).
55. O. Avinc and A. Khoddami, Fibre Chem., 41, 391 (2009).
56. O. Avinc and A. Khoddami, Fibre Chem., 42, 68 (2010).
57. ASTM D5034, "Standard Test Method for Breaking Strength and Elongation of Textile Fabrics (Grab Test)", 2009
58. ASTM D4966, "Standard Test Method for Abrasion Resistance of Textile Fabrics ( Martindale Abrasion Tester Method)", 1998
59. Y. Li and H. Shimizu, Macromol. Biosci., 7, 921 (2007).
60. A. K. Matta, R. U. Rao, K. N. S. Suman, and V. Rambabu, Procedia Mater. Sci., 6, 1266 (2014).
61. M. Sultan, A. Islam, N. Gull, H. N. Bhatti, and Y. Safa, J. Appl. Polym. Sci., 132, 41706 (2015).
62. D.-I. Schutze, G. Kurek, T. Rische, J. Urban, and T. Hassel, U. S. Patent, 6642303 B2 (2003).
63. J. Y. Jang, Y. K. Jhon, I. W. Cheong, and J. H. Kim, Colloids Surf. A, 196, 135 (2002).
64. Y. K. Jhon, I. W. Cheong, and J. H. Kim, Colloids Surf. A, 179, 71 (2001).
65. F. Mumtaz, M. Zuber, K.M. Zia, T. Jamil, R. Hussain, Korean J. Chem. Eng., 30, 2259 (2013).
66. X. Liu, K. Xu, H. Liu, H.L. Cai, J.X. Su, Z. Fu, Y. Guo, M.C. Chen, Prog. Org. Coat., 72, 612 (2011).
67. M. Dargahi, H. Kazemian, M. Soltanieh, M. Hosseinpour, S. Rohani, PowderTechnol., 217, 223 (2012).
68. P.D. Pham, V. Lapinte, Y. Raoul, J. Robin, J. Polym, Sci. A: Polym. Chem., 52, 1597 (2014).
69. C.J. Patel, V. Mannari, Prog. Org. Coat., 77, 997 (2014).
70. C.Y. Bai, X.Y. Zhang, J.B. Dai, C.Y. Zhang, Prog. Org. Coat., 59, 331 (2007).
71. A.C. Aznar, O.R. Pardini, J.I. Amalvy, Prog. Org. Coat., 55, 43 (2006).
72. K.P. McNamee, L.M. Pitet, D.M. Knauss, Polym. Chem., 4, 2546 (2013).
73. D.E. Fiori, Prog. Org. Coat., 32, 65 (1997).
74. V.M. Mannari, J.L. Massingill, J. Coat. Technol. Res., 3, 151 (2006).
75. R. Gu, S. Konar, M. Sain, J. Am, Oil Chem. Soc., 89, 2103 (2012).
76. P.J. Ross, Taguchi Techniques for Quality Engineering: Loss Function, Orthogonal Experiments, Parameter and Tolerance Design, McGraw-Hill, (1988).
77. A.K. Nanda, D.A. Wicks, Polymer, 47 1805 (2006).
78. H.A. Mohamed, B.M. Badran, A.M. Rabie, S.M.M. Morsi, Prog. Org. Coat., 77, 965(2014).
79. H.Q. Fu, C.B. Yan, W. Zhou, H. Huang, Compos. Sci. Technol., 85 65 (2013).
80. F. Yen, J. Hong, Macromolecules, 30, 7927 (1997).

無法下載圖示 全文公開日期 2022/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE