簡易檢索 / 詳目顯示

研究生: 陳楊傑
Yang-Chieh Chen
論文名稱: 乙醇在銅-二氧化鈰觸媒系統上之吸附及轉化
Ethanol Adsorption and Conversion by Copper-Ceria Catalyst System
指導教授: 朱瑾
Jinn Chu
徐新光
Shin-Guang Shyu
口試委員: 張一知
I-jy Chang
林秀美
Hsiu-mei Lin
許益瑞
Yi-Jui Hsu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 60
中文關鍵詞: 乙醇重組銅-二氧化鈰
外文關鍵詞: ethanol reforming, copper-ceria
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究是利用具有氧化還原特性的CeO2,使用初濕含浸法負載於具有良好熱穩定性的SiO2,再與均相沉澱法製備之CeO2(HSA)作為比較。對乙醇在SiO2及CeO2(HSA)為擔體的觸媒上之吸附及轉化現象進行研究,可進一步地了解乙醇之重組反應。利用X光粉末繞射分析、氮氣物理吸附、溫度程序控制還原、乙醇脈衝吸附、溫度程序控制脫附、乙醇脈衝反應、質譜分析儀,分別對擔體觸媒進行鑑定及測試。
藉由Cu金屬之負載可使CeO2(HSA)擁有更高的乙醇吸附量。而溫程脫附過程中,Cu金屬的參與可促進觸媒表面所吸附之物種進行分解,藉此加速反應進行的流程。於乙醇脈衝反應中,Cu金屬的負載可促進乙醇轉化之能力,並使觸媒有利於較低的溫度下進行反應。


This research aims to study the absorption and conversion of ethanol on catalyst supported on SiO2- and CeO2- in order to understand ethanol reforming reaction. The CeO2 was loaded on the SiO2 via incipient wetness impregnation, and its properties was compared with the CeO2 prepared by homogeneous precipitation method. The catalysts were characterized and examined by N2 physisorption, X-ray powder diffraction, temperature programmed reduction, ethanol pulse chemisorption, temperature programmed desorption and ethanol pulse reaction.
Higher ethanol absorption of CeO2(HSA) was achieved by loading 0.2wt% Cu. During the process of temperature programmed reduction, the incorporation of the Cu promoted the decomposition of the surface species of catalyst. The loading of Cu also enhanced the ethanol conversion as indicated in the ethanol pulse chemisorption experiments suggesting that the catalyst system is feasible to operate with lower temperature.

摘要i Abstractii 謝誌iii 目錄v 圖目錄vii 表目錄ix 第一章序論1 1.1前言1 1.2產氫技術1 1.3乙醇製氫2 1.4CeO2的氧化還原特性5 1.5CuO/CeO2觸媒的特性7 1.6擔體效應8 1.7研究架構與方向9 第二章實驗部分10 2.1實驗藥品10 2.2實驗儀器10 2.3擔體觸媒之製備方法10 2.3-1初濕含浸法10 2.3-2均相沉澱法11 2.3-3擔體觸媒之製備11 2.4X光粉末繞射分析13 2.5氮氣物理吸附13 2.6溫度程序控制還原13 2.7乙醇脈衝吸附14 2.8乙醇之溫度程序控制脫附14 2.9乙醇脈衝反應15 第三章結果與討論16 3.1X光粉末繞射之結果與分析16 3.2氮氣物理吸附之結果與分析17 3.3溫度程序控制還原之結果與分析17 3.4乙醇重組反應部分27 3.4-1-1乙醇脈衝吸附之結果27 3.4-1-2乙醇脈衝吸附之分析30 3.4-2-1乙醇之溫度程序控制脫附結果30 3.4-2-2乙醇之溫度程序控制脫附分析42 3.4-3-1乙醇脈衝反應實驗之結果42 3.4-3-2乙醇脈衝反應實驗之分析55 第四章結論56 參考文獻57

1.Nishiguchi, T., et al., Catalytic steam reforming of ethanol to produce hydrogen and acetone. Applied Catalysis a-General, 2005. 279(1-2): p. 273-277.

2.Ni, M., et al., Potential of renewable hydrogen production for energy supply in Hong Kong. International Journal of Hydrogen Energy, 2006. 31(10): p. 1401-1412.

3.Ni, M., et al., A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renewable and Sustainable Energy Reviews, 2007. 11(3): p. 401-425.

4.Ni, M., et al., An overview of hydrogen production from biomass. Fuel Processing Technology, 2006. 87(5): p. 461-472.

5.Goltsov, V.A., T.N. Veziroglu, and L.F. Goltsova, Hydrogen civilization of the future--A new conception of the IAHE. International Journal of Hydrogen Energy, 2006. 31(2): p. 153-159.

6.Haryanto, A., et al., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol:  A Review. Energy & Fuels, 2005. 19(5): p. 2098-2106.

7.Vasudeva, K., et al., Steam reforming of ethanol for hydrogen production: Thermodynamic analysis. International Journal of Hydrogen Energy, 1996. 21(1): p. 13-18.

8.García, E.Y. and M.A. Laborde, Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis. International Journal of Hydrogen Energy, 1991. 16(5): p. 307-312.

9.Velu, S., et al., Oxidative Reforming of Bio-Ethanol Over CuNiZnAl Mixed Oxide Catalysts for Hydrogen Production. Catalysis Letters, 2002. 82(1): p. 145-152.

10.Calles, J.A., A. Carrero, and A.J. Vizcaino, Ce and La modification of mesoporous Cu-Ni/SBA-15 catalysts for hydrogen production through ethanol steam reforming. Microporous and Mesoporous Materials, 2009. 119(1-3): p. 200-207.

11.Djinovic, P., et al., Utilization of High Specific Surface Area CuO-CeO2 Catalysts for High Temperature Processes of Hydrogen Production: Steam Re-forming of Ethanol and Methane Dry Re-forming. Journal of Physical Chemistry A, 2010. 114(11): p. 3939-3949.

12.Fatsikostas, A.N. and X.E. Verykios, Reaction network of steam reforming of ethanol over Ni-based catalysts. Journal of Catalysis, 2004. 225(2): p. 439-452.

13.Deluga, G.A., et al., Renewable Hydrogen from Ethanol by Autothermal Reforming. Science, 2004. 303(5660): p. 993-997.

14.Cavallaro, S., Ethanol Steam Reforming on Rh/Al2O3 Catalysts. Energy & Fuels, 2000. 14(6): p. 1195-1199.

15.Llorca, J., et al., Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol. Journal of Catalysis, 2004. 222(2): p. 470-480.

16.Llorca, J., et al., Chemical Communications, 2001(7).

17.Goula, M.A., S.K. Kontou, and P.E. Tsiakaras, Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst. Applied Catalysis B: Environmental, 2004. 49(2): p. 135-144.

18.Fatsikostas, A.N., D.I. Kondarides, and X.E. Verykios, Chemical Communications, 2001(9).

19.Sheng, P.Y. and H. Idriss, Ethanol reactions over Au--Rh/CeO2 catalysts. Total decomposition and H2 formation. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2004. 22(4): p. 1652-1658.

20.Zhao, S., T. Luo, and R.J. Gorte, Deactivation of the water-gas-shift activity of Pd/ceria by Mo. Journal of Catalysis, 2004. 221(2): p. 413-420.

21.Aguila, G., F. Gracia, and P. Araya, CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature. Applied Catalysis a-General, 2008. 343(1-2): p. 16-24.

22.Pintar, A., J. Batista, and S. Hocevar, TPR, TPO, and TPD examinations of Cu0.15Ce0.85O2-y mixed oxides prepared by co-precipitation, by the sol-gel peroxide route, and by citric acid-assisted synthesis. Journal of Colloid and Interface Science, 2005. 285(1): p. 218-231.

23.Schmieg, S.J. and D.N. Belton, Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst. Applied Catalysis B: Environmental, 1995. 6(2): p. 127-144.

24.Usmen, R.K., et al., Incorporation of La3+ into a Pt/CeO2/Al2O3 catalyst. Catalysis Letters, 1994. 30(1): p. 53-63.

25.Bensalem, A., et al., Preparation and characterization of highly dispersed silica-supported ceria. Applied Catalysis A: General, 1995. 121(1): p. 81-93.

26.Yakimova, M.S., et al., Hydrogen production via steam reforming of ethanol on ceria-containing catalysts. Doklady Chemistry, 2009. 427: p. 190-193.

27.Cai, W., et al., Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming. Journal of Catalysis, 2008. 257(1): p. 96-107.

28.Kugai, J., et al., Effects of nanocrystalline CeO2 supports on the properties and performance of Ni-Rh bimetallic catalyst for oxidative steam reforming of ethanol. Journal of Catalysis, 2006. 238(2): p. 430-440.

29.de Lima, S.M., et al., Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst. Journal of Catalysis, 2008. 257(2): p. 356-368.

30.Jacobs, G., R.A. Keogh, and B.H. Davis, Steam reforming of ethanol over Pt/ceria with co-fed hydrogen. Journal of Catalysis, 2007. 245(2): p. 326-337.

31.Romero-Sarria, F., et al., Hydrogen production by steam reforming of ethanol: Study of mixed oxide catalysts Ce2Zr1.5Me0.5O8: Comparison of Ni/Co and effect of Rh. Catalysis Today, 2008. 133-135: p. 149-153.

32.de Lima, S.M., et al., H2 production through steam reforming of ethanol over Pt/ZrO2, Pt/CeO2 and Pt/CeZrO2 catalysts. Catalysis Today, 2008. 138(3-4): p. 162-168.

33.de Lima, S.M., et al., Ethanol decomposition and steam reforming of ethanol over CeZrO2 and Pt/CeZrO2 catalyst: Reaction mechanism and deactivation. Applied Catalysis A: General, 2009. 352(1-2): p. 95-113.

34.Djinovic, P., J. Levec, and A. Pintar, Effect of structural and acidity/basicity changes of CuO-CeO2 Catalysts on their activity for water-gas shift reaction. Catalysis Today, 2008. 138(3-4): p. 222-227.

35.Djinovic, P., J. Batista, and A. Pintar, Calcination temperature and CuO loading dependence on CuO-CeO2 catalyst activity for water-gas shift reaction. Applied Catalysis a-General, 2008. 347(1): p. 23-33.

36.Song, H. and U.S. Ozkan, Ethanol steam reforming over Co-based catalysts: Role of oxygen mobility. Journal of Catalysis, 2009. 261(1): p. 66-74.

37.Toupance, T., M. Kermarec, and C. Louis, Metal particle size in silica-supported copper catalysts. Influence of the conditions of preparation and of thermal pretreatments. Journal of Physical Chemistry B, 2000. 104(5): p. 965-972.

38.Guerreroruiz, A., I. Rodriguezramos, and J.L.G. Fierro, DEHYDROGENATION OF METHANOL TO METHYL FORMATE OVER SUPPORTED COPPER-CATALYSTS. Applied Catalysis, 1991. 72(1): p. 119-137.

39.Roh, H.-S., et al., Low Temperature and H2 Selective Catalysts for Ethanol Steam Reforming. Catalysis Letters, 2006. 108(1): p. 15-19.

40.van den Oetelaar, L.C.A., et al., A surface science study of model catalysts. 2. Metal-support interactions in Cu/SiO2 model catalysts. Journal of Physical Chemistry B, 1998. 102(47): p. 9541-9549.

41.Gil, A., et al., Influence of the preparation method and the nature of the support on the stability of nickel catalysts. Applied Catalysis A: General, 1994. 109(2): p. 167-179.

42.Li, Y., Q. Fu, and M. Flytzani-Stephanopoulos, Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts. Applied Catalysis B: Environmental, 2000. 27(3): p. 179-191.

43.Águila, G., F. Gracia, and P. Araya, CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature. Applied Catalysis A: General, 2008. 343(1-2): p. 16-24.

44.Delimaris, D. and T. Ioannides, VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method. Applied Catalysis B: Environmental, 2009. 89(1-2): p. 295-302.

無法下載圖示 全文公開日期 2015/08/02 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE