簡易檢索 / 詳目顯示

研究生: Luong Huynh Vu Thanh
Luong - Huynh Vu Thanh
論文名稱: 自水溶液中浮選分離鎵、銦、鈀及鍶-物種及溶解度的效應
Flotation Separation of Ga, In, Pd and Sr from Aqueous Solution – Effects of Chemical Speciation and Solubility
指導教授: 劉志成
Jhy-Chern Liu
口試委員: Young Ku
Young Ku
Chih-Pin Huang
Chih-Pin Huang
Shiao-Shing Chen
Shiao-Shing Chen
Chi-Wang Li
Chi-Wang Li
Truong Chi Thanh
Truong Chi Thanh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 182
中文關鍵詞: 浮選溶解度物種
外文關鍵詞: speciation, solubility, palladium, indium, gallium, Flotation, strontium, water.
相關次數: 點閱:270下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著半導體材料、觸媒及核子應用的興盛,稀有金屬如銦(In)、鎵(Ga)、鈀(Pd)和鍶(Sr),是不可或缺且廣泛運用於製造過程中的。然而我們對其於自然環境中的命運與傳播途徑,及其對生態系統和人體健康的衝擊所知甚少。本次研究目的是藉由分散氣體浮選法(Dispersed air flotaion)來探討銦、鎵、鈀和鍶的水中物種(speciation)、溶解度及浮選分離效果。銦在pH值範圍 6.0到9.8間為極難溶;鎵則在pH值範圍 4.9到5.8間為極難溶。此兩種金屬皆在上述pH值範圍以外偏酸或偏鹼的情況下有較高的溶解度。除此之外是鍶(1.62 mM)在酸性至pH值 11.5的範圍內皆極易溶解,在pH值 12.5時有相當程度地沉澱(37.33%)。鈀在水中是極難溶的,且氯做為錯合物配位基會對其溶解度造成極大的影響。本研究之浮選分離法可以準一階(pseudo-first-order)動力模式描述,其分離速率隨氮氣流量增加而增加,同時離子強度會些微干擾這些金屬的浮選分離效率。分離效率亦受不同的收集劑(collector)及劑量影響,十二烷基硫酸鈉(SDS)較適合用來去除銦、鎵及鍶。溴化十六烷基三甲銨(CTAB)在去除銦、鎵及鍶上效果較差,用於鈀的分離則有較佳的結果。這些結果將基於銦、鎵、鈀和鍶的物種、溶解度做討論。浮選分離的主要機制為收集劑與目標化合物的靜電交互作用。


With the rise in semiconductor materials, catalysts, and nuclear applications, rare metals are essential and they have been used in production processes, e.g., indium (In), gallium (Ga), palladium (Pd), and strontium (Sr).However, little is known on their fate and transport in the environment, or the impact on the ecosystems and human health.The objectives of the study are to examine solubility and speciation, and flotation separation of these metals via dispersed air flotation (DiAF). In was highly insoluble in pH range of 6.0-9.8, and Ga in pH 4.9-5.8; and both were more soluble as pH became more acidic or more alkaline. On the other hand, Sr (1.62 mM) was highly soluble from acidic pH to highly alkaline pH (11.5) and moderately precipitated (37.33%) at pH 12.5. Pd was highly insoluble and its solubility was critically affected by chloride as a ligand for complexation. It was found that flotation separation could be described by pseudo-first-order kinetic model and its rate constant increased with increasing N2 flow rate.Ionic strength slightly hindered flotation separation efficiency of these metals. Removal efficiencies of these metals were affected by types of collectors and collector dose. While sodium dodecyl sulfate (SDS) facilitated the removal of In, Ga, Sr, cetyl trimethyl ammonium bromide (CTAB) was not an effective. However, CTAB was effective on separation of Pd. These effects were discussed based on the speciation and solubility of In, Ga, Pd and Sr.The main mechanism of flotation separation was the electrostatic interaction of collectors and target compounds.

摘要 i ABSTRACT ii ACKNOWLEDGEMENTS iii TABLE OF CONTENTS v NOMENCLATURES ix LIST OF FIGURES xi LIST OF TABLES xv CHAPTER 1 INTRODUCTION 1 1.1. Background 1 1.2. Objectives of study 6 1.3. Scope of research 6 CHAPTER 2 LITERATURE REVIEW 1 2.1. Indium 1 2.1.1. Aqueous chemistry of In 1 2.1.2. Treatment techniques for In removal 4 2.2. Gallium 10 2.2.1. Aqueous chemistry of Ga 10 2.2.2. Treatment techniques for Ga removal 13 2.3. Palladium 20 2.3.1. Aqueous chemistry of Pd 20 2.3.2. Treatment techniques for Pa removal 25 2.4. Strontium 31 2.4.1. Aqueous chemistry of Sr 31 2.4.2. Treatment techniques for Sr 33 2.5. Flotation separation 38 2.5.1. pH 39 2.5.2. Surfactant and its dose 40 2.5.3. Gas flow rate and bubble size 42 2.5.4. Ionic strength 43 CHAPTER 3 MATERIALS AND METHODS 1 3.1. Materials 1 3.2. Methods 1 3.2.1. Solubility determination 1 3.2.2. Speciation determination 3 3.2.3. Precipitation of Sr2+ ion and PO43- ion 4 3.2.4. Flotation experiment 5 3.2.5. Zeta potential measurement 9 3.2.6. Particle size distribution 9 3.2.7. Experimental flow chart 10 CHAPTER 4 RESULTS AND DISCUSSION 1 4.1. Indium 1 4.1.1. Speciation and solubility of In in water 1 4.1.2. Kinetics and effect of N2 flow rate on flotation 5 4.1.3. Effect of pH 7 4.1.4. Effect of collector dose 12 4.1.5. Effect of ionic strength 13 4.2. Gallium 14 4.2.1. Speciation and solubility of Ga in aqueous solution 14 4.2.2. Kinetics and effect of N2 flow rate 18 4.2.3. Effect of pH and collector dose 20 4.2.4. Effect of ionic strength 25 4.3. Palladium 27 4.3.1. Solubility and speciation of Pd 27 4.3.2. Kinetics and effect of N2 flow rate 39 4.3.3. Effect of collector and its dose 41 4.4. Strontium 46 4.4.1. Solubility of Sr 46 4.4.2. Effect of PO43- dose and pH on precipitation of Sr 47 4.4.3. Effect of Ca2+ ion on precipitation of Sr 50 4.4.4. Effect of collector type and its dose 51 4.4.5. Kinetics and effect of N2 flow rate 59 4.4.6. Effect of ionic strength 61 CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS 1 5.1. Conclusions 1 5.1.1. Indium 1 5.1.2. Gallium 2 5.1.3. Palladium 3 5.1.4. Strontium 4 5.2. Recommendations 5 REFERENCES 1 APPENDIX A 1

Ahmadpour, A., Zabihi, M., Tahmasbi, M., Bastami, T. R. (2010). Effect of adsorbents and chemical treatments on the removal of strontium from aqueous solutions. Journal of Hazardous Materials, 182, 552-556.
Ahmed, I.M., El-Nadi, Y.A., El-Hefny, N.E. (2013). Extraction of gallium(III) from hydrochloric acid by Cyanex 923 and Cyanex 925. Hydrometallurgy, 131–132, 24–28.
Ahmed, N., Jameson, G. J. (1985). The effect of bubble size on the rate of flotation of fine particles. International Journal of Mineral Processing, 14, 195-215.
Albijanic, B., Ozdemir, O., Nguyen, A. V., Bradshaw, D. (2010). A review of induction and attachment times of wetting thin films between air bubbles and particles and its relevance in the separation of particles by flotation. Advances in Colloid and Interface Science, 159, 1–21.
Alfredo, K., Adams, C., Eaton, A., Roberson, J. A., Stanford, B. (2014). The potential regulatory implications of strontium. American Water Works Association, Washington.
Atkin, R., Craig, V. S. J., Wanless, E. J., Biggs, S. (2003). Mechanism of cationic surfactant adsorption at the solid–aqueous interface. Advances in Colloid and Interface Science, 103, 219–304.
Awual, M. R., Yaita, T., El-Safty, S. A., Shiwaku, H., Okamoto, Y., Suzuki, S. (2013). Investigation of palladium(II) detection and recovery using ligand modified conjugate adsorbent. Chemical Engineering Journal, 222, 172-179.
Baes Jr., C.F., Mesmer, R. E. (1986). The Hydrolysis of Cations. Krieger Publishing Company, Malabar, Florida.
Baes, C. F., Mesmer, R. E. (1976). The hydrolysis of Cations. Wiley, New York.
Bazarkina, E. F., Pokrovski, G. S., Hazemann, J. L. (2014). Structure, stability and geochemical role of palladium chloride complexes in hydrothermal fluids. Geochimica et Cosmichimica Acta, 146, 107-131.
Benezeth, P., Diakonov, I. I., Pokrovski, G. S., Dandurand, J. L., Schott, J., Khodakovsky, I. L. (1997). Gallium speciation in aqueous solution. Experimental study and modelling: Part 2. Solubility of a-GaOOH in acidic solutions from 150 to 250˚C and hydrolysis constants of gallium(III) to 300˚C. Geochimica et Cosmochimica Acta, 61, 1345– 1357.
Bereslavtseva, L. F., Toropova, T. G. (1959). On the solubility of indium hydroxide. Izvestiya Vysshikh Uchebnykh Zavedenii Khimiya i Khimicheskaya Tekhnologiya, 2, 97–100 (in Russian).
Bernardis, F.L., Grant, R. A., Sherrington, D. C. (2005). A review of methods of separation of the platinum-group metals through their chloro-complexes. Reactive and Functional Polymers, 65, 205-217.
Betoulle, S., Etienne, J.C., Vernet, G. (2002). Acute immunotoxicity of gallium to carp
(Cyprinus carpio L.), Bulletin of Environmental Contamination and Toxicology, 68, 817–823.
Biedermann, G., (1956). Studies on the hydrolysis of metal ions: Part 14. The hydrolysis of the indium(III) ion: In3+. Arkiv for Kemi, 9, 278–293.
Biedermann, G., Ferri, D., (1982). On the polynuclear hydrolysis of the indium ion: In3+. Acta Chemica Scandinavica A, 36, 611 – 622.
Birinci, E., Gulfen, M., Aydın, A. O. (2009). Separation and recovery of palladium(II) from base metal ions by melamine–formaldehyde–thiourea (MFT) chelating resin. Hydrometallurgy, 95, 15–21.
Biryuk, E. A., Nazarenko, V. A. (1973). Determination of the hydrolysis constants of monomeric gallium ions in solutions with ionic strength 0.1–1.0. Russian Journal of Inorganic Chemistry, 18, 1576–1578.
Biryuk, E. A., Nazarenko, V. A., Ravitskaya, R. V. (1969). Spectrophotometric determination of the hydrolysis constants of indium ions. Russian Journal of Inorganic Chemistry, 14, 503– 506.
Bjerrum, J., Schwarzenbach, G., and Sillen, L. G. (1958). Stability constants of metal-ion complexes with solubility products of inorganic substances, part II: inorganic ligands. The Chemistry Society, London.
Bleiwas, D.I. (2010). Byproduct mineral commodities used for the production of photovoltaic cells: US Geological Survey Circular 1365, in, US Geological Survey.
Boily, J. F. and Seward, T. M. (2005). Palladium(II) chloride complexation: Spectrophotometric investigation in aqueous solutions from 5 to 125˚C and theoretical insight into Pd-Cl and Pd-OH2 interations. Geochimica et Cosmochinica Acta, 69(15), 3773-3789.
Brown, P. L. (1989). The hydrolysis of metal ions: Part 11. The ionic strength dependence of gallium (III). Journal of the Chemical Society. Dalton Transactions, 399–402.
Brown, P. L., Ellis, J., Sylva, R. N., (1982). The hydrolysis of metal ions: Part 4. Indium(III). Journal of the Chemical Society. Dalton Transactions, 1911 – 1914.
Brum, M. C., Oliveira, J. F. (2007). Removal of humic acid from water by precipitate flotation using cationic surfactants. Minerals Engineering, 20, 945–949
Byrne, R. H. and Kump, L. R. (1993). Comment on “Speciation of aqueous palladium(II) chloride solution using optical spectroscopies”. Geochimica et Cosmochinica Acta, 57, 1151-1156.
Byrne, R. H. and Yao, W. S. (2000). Formation of palladium(II) hydroxychloride complexes and precipitates in sodium chloride solution and seawater. Geochimica et Cosmochinica Acta, 64(24), 4153-4156.
Campisi, A., Tregloan, P. A. (1985). Kinetics and equilibria of Ga(III)–thiocyanate complex formation. Mechanism of ligand substitution reactions of Ga (III) in aqueous solution. Inorganica Chimica Acta, 100, 251–259.
Can, M., Bulut, E., Ornek, A., Ozacar, M. (2013). Synthesis and characterization of valonea tannin resin and its interaction with palladium (II), rhodium (III) chloro complexes. Chemical Engineering Journal, 221, 146-158.
Cao, J. G., Gu, P., Zhao, J., Zhang, D., Deng, Y. (2010). Removal of strontium from an aqueous solution using co-precipitation followed by microfiltration (CPMF). Journal of Radioanalytical and Nuclear Chemistry, 285, 539-546.
Chegrouchea, S., Bensmaili, A. (2002). Removal of Ga(III) from aqueous solution by adsorption on activated bentonite using a factorial design. Water Research, 36, 2898–2904.
Chen, H. R., Chen, C. C., Reddy, A. S., Chen, C. Y., Li, W. L., Tseng, M. J., Liu, H. T., Pan, W., Maity, J. P., Atla, S. B. (2011). Removal of mercury by foam fractionation using surfactin, a biosurfactant. International Journal of Molecular Sciences, 12(11), 8245-8258.
Chen, H. W. (2007). Exposure and health risk of gallium, indium, and arsenic from
semiconductor manufacturing industry workers, Bulletin of Environmental Contamination and Toxicology, 78, 5–9.
Cho, Y. and Komarneni, S. (2009), Cation exchange equilibria of cesium and strontium with K-depleted biotite and muscovite. Applied Clay Science, 44, 15-20.
Choi , S. Y., Yoshida, Z., Ohashi, K. (2002). Supercritical carbon dioxide extraction equilibrium of gallium(III) with 2-methyl-8-quinolinol and 2-methyl-5-butyloxymethyl-8-quinolinol. Talanta, 56, 689–697.
Chou, W. L., Huang, Y. H. (2009). Electrochemical removal of indium ions from aqueous solution using iron electrodes. Journal of Hazardous Materials, 172, 46-53.
Chou, W. L., Wang, C. T., Huang, K. Y. (2009). Effect of operating parameters on indium (III) ions removal by iron electro-coagulation and evaluation of specific energy consumption. Journal of Hazardous Materials, 167, 467-474.
Chou, W. L., Yang, K. C. (2008). Effect of various chelating agents on supercritical carbon dioxide extraction of indium (III) ions from acidic aqueous solution. Journal of Hazardous Materials, 154, 498-505.
Chou,W.L., Wang, C.T., Yang, K.C., Huang, Y.H. (2008). Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process. Journal of Hazardous Materials, 160, 6–12.
Cordoba, L. M., Moran, J. A., Santos Jr, S., Piro, O. E., Gomez, M. I. (2011). Synthesis and crystal structure of ammonium, strontium hexacyanoferrate(II) dehydrate. Journal of Chemical Crystallography, 41, 1280-1284.
Dahl, S. G., Allain, P., Marie, P. J., Mauras, Y., Boivin, G., Ammann, P., Tsouderos, Y., Delmas, P. D., Christiansen, C. (2001). Incorporation and distribution of strontium in bone. Bone, 28, 446-453.
Dakshinamoorthy, A., Dhami, P. S., Naik, P. W., Dudwadkar, N. L., Munshi, S. K., Dey, P. K., Venugopal, V. (2008). Separation of palladium from high level liquid waste of PUREX origin by solvent extraction and precipitation methods using oximes. Desalination, 232, 26-36.
Dobby, G. S., Finch, J. A. (1986). Particle collection in column – gas rate and bubble size effects. Canadian Metallurgical Quarterly, 25, 9-13.
Dobson, K. D., Roddick-Lanzlotta, A. D., McQuillan, A. J. (2000). An insitu infrared spectroscopic investigation of adsorption of sodium dodecylsulfate and of cetylammonium bromide surfactants to TiO2, ZrO2, Al2O3, and Ta2O5 particle films from aqueous solutions. Vibrational Spectroscopy, 24, 287-295.
Duma, T. W., Marsicano, F., Hancock, R. D. (1991). The affinity of gallium(III) and indium(III) for nitrogen donor ligands. Journal of Coordination Chemistry, 23, 221– 232.
Dumortier, R., Rodil, E., Weber, M. E., Vera, J. H. (2004). Selective removal of gallium (III) from aqueous solutions containing zinc or aluminum using sodium di-(n-octyl) phosphinate. Water research, 38(7), 1745-1752.
Elding, L. I. (1972). Palladium(II) halide complexes. I. Stabilities and spectra of palladium(II) chloro and bromo aqua complexes. Inorganica Chimica Acta, 6, 647-651.
Faghihian, H., Nasrabadi, Sh. N., Khonsari, S. (2014). Removal of Sr(II) from Aqueous Solutions by Aminosilane Functionalized MCM-48. Separation Science and Technology, 49, 2031–2038.
Feitknecht, W., Schindler, P. (1963). Solubility constants of metal oxides, metal hydroxides and metal hydroxide salts in aqueous solution. Pure and Applied Chemistry, 6, 130-199.
Finch, J. A., Dobby, G. S. (1991). Column flotation: A selected review. Part 1. International Journal of Mineral Processing, 33(1-4), 343-354.
Font, O., Querol, X., Juan, R., Casado, R., Ruiz, C. R., Lopez-Soler, A., Coca, P., Peńa, F. G. (2007). Recovery of gallium and vanadium from gasification fly ash. Journal of Hazardous Materials, A139, 413–423.
Fortin, C., Wang, F.Y., Pitre, D. (2011). Critical review of platium group elements (Pd. Pt, Rh) in aquatic ecosystems. Project report No R-1269, Inorganics Unit, Ecological Assessment Division, Science and Technology Branch, Environment Canada.
Fuerstenau, D. W., Pradip, T. (2005). Zeta potentials in the flotation of oxide and silicate minerals. Advances in Colloid and Interface Science, 114–115, 9 – 26.
Gasser, M. S., Nowier, H. G. (2004). Separation of strontium and cadmium ions from nitrate medium by ion-exchange membrane in an electrodilysis system. Journal of Chemical Technology and Biotechnology, 79, 97-102.
Gianguzza, A., Milea, D., Pettignano, A., Sammartano, S. (2010). Pallasium(II) sequestration by phytate in aqueous solution-speciation analysis and ionic medium effects. Environmental Chemistry, 7, 259-267.
Gopalratnam, V. C., Bennett, G. F., Peters, R. W. (1992). Effect of collector dosage on metal removal by precipitation/flotation. Journal of Environmental Engineering, 118(6), 923–948.
Gorain, B. K., Franzidis, J. P., Manlapig, E. V. (1995). Studies on impeller type, impeller speed and air flow rate in an industrial scale flotation cell − Part 1: Effect on bubble size distribution. Minerals Engineering, 6, 615-635.
Gordienko, V.I. (1974). pH-potentiometric determination of the composition of hydroxo complexes and of the hydrolysis constants of salts of weak bases at high ionic strengths: II. Products of first stage of hydrolysis. Journal of General Chemistry of the USSR, 44, 853–859.
Gupta, B., Mudhar, N., Singh, I. (2007). Separation and recovery of indium and gallium using bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272). Separation and Purification Technology, 57, 294-303.
Gupta, B., Singh, I. (2013). Extraction and separation of platinum, palladium and rhodium using Cyanex 923 and their recovery from real samples. Hydrometallurgy, 134–135, 11–18.
He, X. C. (1991). Ion flotation of rhodium(III) and palladium(II) with anionic surfactants. Talanta, 38(3), 319-323.
Herdzik, I., Dembinski, W., Narbutt, J., Siekierski, S. (2012). Separation of gallium and indium isotopes by cation and anion exchange chromatography. Solvent Extraction and Ion Exchange, 30, 593-603.
Homma, T., Ueno, T., Sekizawa, K., Tanaka, A., Hirata, M. (2003). Interstitial pneumonia developed in a worker dealing with particles containing indium-tin oxide. Journal of Occupational Health, 45, 137-139.
Hu, C. Y., Lo, S. L., Kuan, W. H., Lee, Y. D. (2005). Removal of fluoride from semiconductor wastewater by electrocoagulation–flotation. Water Research, 39, 895–901.
Huang, C. J., Liu, J.C. (1999) Precipitate flotation of fluoride-containing wastewater from a semiconductor manufacturer. Water Research, 33(16), 3403–3412.
Huang, W. J., Tang, H. C., Lin, K. L., Liao, M. H. (2010). An emerging pollutant contributing to the cytotoxicity of MSWI ash waste: Strontium. Journal of Hazardous Materials, 173, 597-604.
Hubicki, Z., Leszczyńska, M., Lodyga, B., Lodyga, A. (2006). Palladium(II) removal from chloride and chloride-nitrate solution by chelating ion-exchangers containing N-donor atoms. Minerals Engineering, 19, 1341-1347.
Hubicki, Z., Wolowicz, A., Leszczyńska, M. (2008). Studies of removal of palladium(II) ions from chloride solutions on weakly and strongly basic anion exchangers. Journal of Hazardous Materials, 159, 280-286.
Inan, S., Tel, H., altas, Y. (2006). Adsorption studies of strontium on hydrous zirconium dioxide. Journal of Radioanalytical and Nuclear Chemistry, 267, 615-621.
Izatt, S.R., Izatt, N.E. Bruening, R.L. (2010). Metal separations of interest to the Chinesemetallurgical industrial. Journal of Rare Earth, 28, 22–29.
Jaskula, B.W. (2013). Gallium, Mineral Commodity Summaries; US Geological Survey.
Jiang, J., Liang, D., Zhong, Q., (2011) Precipitation of indium using sodium tripolyphostephate. Hydrometalurry, 106, 165-169.
Kabil, M. A., Akl, M. A., Khalifa, M. E. (1999). Selective flotation-spectrophotometric procedure for the trace analysis of palladium(II) in different matrices. Analytical Science, 15, 433-438.
Kamio, E., Matsumoto, M., Kondo, K. (2002). Uptakes of rare metal ionic species by a column packed with microcapsules containing an extractant. Separation and Purification Technology, 29, 121–130.
Kang, H. N., Lee, J. Y., Kim, J. Y. (2011). Recovery of indium from etching waste by solvent extraction and electrolytic refining. Hydrometalurry, 110, 120-127.
Kazakova, V. I. and Ptitsyn, B. V. (1967). Hydrolysis of halogeno-complexes of palladium. Russian Journal of Inorganic Chemistry, 12, 323-326.
Kazemain, H., Zakeri, H., Rabbani, M. S. (2006), Cs and Sr removal from solution using potassium nickel hexacyanoferrate impresnated zeolites. Journal of Radioanalytical and Nuclear Chemistry, 268(2), 231-236.
Kielhorn, J., Melber, C., Keller, D., Mangelsdorf, I. (2002). Palladium – A review of exposure and effects to human health. International Journal of Hygiene and Environmental Health, 205, 417-432.
Kim, J. G. (2013). Material flow and industrial demand for palladium in Korea. Resources, Conservation and Recycling, 77, 22-28.
Kinoshita, T., Akita, S., Nii, S., Kawaizumi, F., Takahashi, K. (2004). Solvent extraction of gallium with non-ionic surfactants from hydrochloric acid solution and its application to metal recovery from zinc refinery residues. Separation and Purification Technology, 37, 127–133.
Kitamura, A., Doi, R., Yoshida, Y. (2014). Update of JAEA-TDB: Update of Thermodynamic Data for Palladium and Tin, Refinement of Thermodynamic Data for Protactinium, and Preparation of PHREEQC Database for Use of the Bronsted-Guggenheim-Scatchard Model. Geological Isolation Research Unit Geological Isolation Research and Development Directorate, Japan Atomic Energy Agency.
Kondo, K., Sawada, M., Matsumoto, M. (2014). Adsorption and separation of palladium and platinum with microcapsules containing tri-n-octylamine hydrochloride. Journal of Water Process Engineering, 1, 115–120.
Kononova, O. N., Goryaeva, N. G., Dychko, O. V. (2009). Ion exchange recovery of palladium (II) from nitrate weak acidic solution. Natural Science, 1(3), 166-175.
Kowalczuk, P.B. (2013) Determination of critical coalescence concentration and bubble size for surfactants used as flotation frothers. Industrial and Engineering Chemistry Research, 52(33), 11752–11757.
Laplante, A. R., Toguri, J. M., Smith, H. W. (1983). The effect of air flow rate on the kinetics of flotation. Part 1: The transfer of material from the slurry to the froth. International Journal of Mineral Processing, 11, 203-219.
Lehto, J., Hou, X.L. (2011). Chemistry and Analysis of Radionuclides: Laboratory Techniques and Methodology, John Wiley and Sons.
Lemlich, R. (1972). Adsorptive bubble separation techniques. Academic Press, Inc, New York.
Li , Y. F., Zhao, W. D., Gui, X. H., Zhang, X. B. (2013). Flotation kinetics and separation selectivity of coal size fraction. Physicochemical Problems of Mineral Processing, 49, 387- 395.
Li, H. M., Liu, J. S., Gao, X. Z., Liu, C., Guo, L., Zhang, S. X., Liu, X. Y., Liu, C. P. (2012). Adsorption behavior of indium (III) on modified solvent impregnated resins (MSIRs) containing secoctylphenoxy acetic acid. Hydrometallurgy, 121-124, 60-67.
Li, N., Thomas, R. K., Rennie, A. R. (2012). Effect of pH, surface and counter-ions on the adsorption for sodium dodecyl sulfate to the sapphire/solution interface. Journal of Colloid and Interface Science, 378, 152-158.
Licht, S. (1988). Aqueous solubilities, solubility products and standard oxidation-reduction potentials of the metal sulfides. Journal of the electrochemical society, 135, 2971-2973.
Lin, C. S., Huang, S. D. (1994). Removal of Cu(II) from aqueous solution with high ionic strength by adsorbing colloid flotation. Environmental Science and Technology, 28, 474-478.
Liu, C. H., Shih, Y. J., Huang, Y. H., Huang, C. P. (2014). Kinetic and thermodynamic studies for adsorptive removal of Sr2+ using waste iron oxide. Journal of the Taiwan Institute of Chemical Engineers, 45(3), 914-920.
Liu, C., Xu, L., Yang, X., Peng, T., Ren, J. (2012). Preparation of strontium ferrite from strontium residue. Chinese Journal of Geochemistry, 31, 74-77.
Liu, J. C., Warmadewanthi, Chang, C. J. (2009). Precipitation flotation of phosphate from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347, 215–219.
Loferski, P. J. (2014). Platinum-Group Metals, Mineral Commodity Summaries; US Geological Survey.
Ma, B., Oh, S., Shin, W. S., Choi, S. J. (2011), Removal of Co2+, Sr2+ and Cs+ from aqueous solution by phosphate-modified montmorillonite (PMM). Desalination, 276, 336-346.
Ma, X., Bruckard, W. J., Holmes, R. (2009). Effect of collector, pH and ionic strength on the cationic flotation of kaolinite. International Journal of Mineral Processing, 93, 54–58.
Maitya, J. P., Huang,Y. M., Hsu, C. M., Wu, C. I, Chen, C. C., Li, C. Y., Jean, J. S., Chang, Y. F., Chen, C. Y. (2013). Removal of Cu, Pb and Zn by foam fractionation and a soil washing process from contaminated industrial soils using soapberry-derived saponin: A comparative effectiveness assessment. Chemosphere, 92, 1286–1293.
Marinho, R. S., Silva, C. N. d., Afonso, J. C., Cunha, J. W. S. D. d. (2011). Recovery of platinum, tin and indium from spent catalysis in chloride medium using strong basic anion exchange resins. Journal of Hazardous materials, 192, 1155-1160.
Massaoud, A. A., Hanafi, H. A., Siyam, T., Saleh, Z. A., Ali, F. A. (2008). Separation of Ga(III) from Cu(II), Ni(II) and Zn(II) in aqueous solution using synthetic polymeric resins. Central European Journal of Chemistry, 6, 39–45.
Masuyama, A., Okano, T., Okahara, M. (1990). Application of surface-active amide oximes to the collectors for gallium ion in an ion-flotation system. Industrial and Engineering Chemistry Research, 29, 290-294.
Matis, K. A., Lazaridis, N. K., Zouboulis, A. I., Gallios, G. P., Mavrov, V. (2005). A hybrid flotation—microfiltration process for metal ions recovery. Journal of Membrane Science, 247, 29–35.
Matis, K. A., Zouboulis, A. I. (2001). Flotation techniques in water technology for metals recovery: the impact of speciation. Separation Science and Technology, 36, 3777-3800.
McPherson, C. A., Lawrence, G. S., Elphick, J. R., Chapman, P. M. (2014). Development of strontium chronic effects benchmark for aquatic life in freshwater. Environmental Toxicity and Chemistry, 33, 2472-2478.
Mear, F., Yot, P., Cambon, M., Ribes, M. (2006). The characterization of waste cathode-ray tube glass. Waste management, 26, 1468-1474.
Medina, B. Y., Torem, M. L., de Mesquita, L. M. S. (2005). On the kinetics of precipitation flotation of Cr III using sodium dedecylsulfate and ethanol. Minerals Engineering, 18, 225-231.
Micheau, C., Bauduin, P., Diat, O., Faune, S. (2013). Specific salt and pH effects on foam film of a pH sensitive surfactant. Langmuir, 29, 8472-8481.
Middlesworth, J. M. v. and Wood, S. A. (1999). The stability of palladium(II) hydroxide and hydroxy-chloride complexes: An experimental solubility study at 25-85C and 1 bar. Geochimica et Cosmochinica Acta, 63(11-12), 1751-1765.
Minamisawa, H., Murashima, K., Minamisawa, M., Arai, N., Okutani, T. (2003). Determination of indium by graphite furnace atomic absorption spectrometry after co-precipitation with chitosan. Analytical Science, 19, 401.
Mitra, S., Dungan, S. R. (1997). Micellar Properties of Quillaja Saponin. 1. Effects of temperature, salt, and pH on solution properties. Journal of Agricultural and Food Chemistry, 45, 1587−1595.
Miyazaki, A., Kimura, A., Tao, H. (2012). Distribution of indium, thallium and bismuth in the environmental water of Japan. Bulletin of Environmental Contamination and Toxicology, 89, 1211-1215.
Mohammed, A. A. Ebrahim, S. E., Alwared, A. I. (2013). Flotation and Sorptive-Flotation Methods for Removal of Lead Ions from Wastewater Using SDS as Surfactant and Barley Husk as Biosorbent. Journal of Chemistry, 1-6.
Mohammed, A. A., Abed, F. I. (2011). Removal of copper ion from wastewater by flotation. Journal of Engineering, 17, 1483-1491.
Moshtari, B., Babakhani, E. G., Moghaddas, J. S. (2009). Experimental study of gas hold-up and bubble behavior in gas-liquid bubble column. Petroleum and coal, 51, 27-32.
Murthy, Z. V. P., Parmar, S. (2011). Removal of strontium by electrocoagulation using stainless steel and aluminum electrodes. Desalination, 282, 63-67.
Nabivanets, B. I. and Kalabina, L. v. (1970). State of palladium(II) in perchloride solutions. Russian Journal of Inorganic Chemistry, 15, 818-821.
Nazarenko, V. A., Flyantikova, G. V. (1968). Cationic hydroxo-complexes of germanium(IV) in solutions with ionic strength 0–1. Russian Journal of Inorganic Chemistry, 13, 966–969.
Nishihama, S., Hirai, T., Komasawa, I. (1999). Separation and recovery of gallium and indium from simulated zinc refinery residue by liquid-liquid extraction. Industrial and Engineering Chemistry Research, 38, 1032-1039.
Paiva, A. P. (2001). Recovery of indium from aqueous solutions by solvent extraction. Separation Science and Technology, 36(7), 1395-1419.
Pan, L., Zhang, Z. D. (2009). Solvent extraction and separation of palladium(II) and platinum(IV) from hydrochloric acid medium with dibutyl sulfoxide. Minerals Engineering, 22, 1271-1276.
Paria, S., Khilar, K. C. (2004). A review on experimental studies of surfactant adsorption at the hydrophilic solid-water interface. Advances in Colloid and Interface Science, 110, 75-95.
Park, Y., Lee, Y. C., Shin, W. S., Choi, S. J. (2010). Removal of cobalt, strontium, cesium from radioactive laundry wastewater by ammonium molybdophosphate-polyacrylonitrile (AMP-PAN). Chemical Engineering Journal, 162, 685-695.
Parkhurst, D. L., Appelo, C. A. J. (1999). User’s Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. Water Resources Investigations Report, US Geological Survey, Denver, Colorado.
Paudyal, H., Pangeni, B., Inoue, K., Ohto, K., Kawakita, H., Ghimire, K. N., Harada, H., Alam, S. (2014). Adsorptive Removal of Strontium from Water by using Chemically Modified Orange Juice Residue. Separation Science and Technology, 49, 1244–1250.
Penfold, J., Staples, E., Tucker, I., Thomas, R. K. (2002). Adsorption of mixed anionic and nonionic surfactants at the hydrophilic silicon surface. Langmuir, 18, 5755-5760.
Peng, F. F., Di, P. K. (1994). Removal of Arsenic from Aqueous Solution by Adsorbing Colloid Flotation. Industrial and Engineering Chemistry Research, 33, 922-928.
Perez-Garibay, R., Ramirez-Aguilera, N., Bouchard, J., Rubio J. (2014). Froth flotation of sphalerite: Collector concentration, gas dispersion and particle size effects. Minerals Engineering, 57, 72–78.
Phipps, G., Mikolajczak, C., Guckes, T. (2008). Indium and gallium: long-term supply. Renewable Energy Focus, 9, 56-59.
Pinfold, T. A., Lemlich, R. (1972). Adsorptive bubble separation techniques. Academic Press, New York and London.
Polat, H., Erdogan, D. (2007). Heavy metal removal from waste waters by ion flotation. Journal of Hazardous Materials, 148, 267–273.
Polat, M., Chander, S. (2000). First-order flotation kinetics models and methods for estimation of the true distribution of flotation rate constants. International Journal of Mineral Processing, 58, 145-166.
Pugh, R. J., Weissenborn, P., Paulson, O. (1997). Flotation in inorganic electrolytes; the relationship between recover of hydrophobic particles, surface tension, bubble coalescence and gas solubility. International Journal of Mineral Processing, 51, 125-138.
Puvvada, G. V.K. (1999). Liquid–liquid extraction of gallium from Bayer process liquor using Kelex 100 in the presence of surfactants. Hydrometallurgy, 52(1), 9-19.
Rai, D., Yui, M., Kitamura, A. (2012). Thermodynamic model for amorphous Pd(OH)2 solubility in the aqueous Na+-K+-H+-OH—Cl--ClO4--H2O system at 25˚C: A critical review. Journal of Solution Chemistry, 41, 1965-1985.
Rao, K. H., Dwari, R. K., Lu, S., Vilinska, A., Somasundaran, P. (2011). Mixed Anionic/Non-Ionic Collectors in Phosphate Gangue Flotation from Magnetite Fines. The Open Mineral Processing Journal, 4, 14-24.
Rao, K. H., Forssberg, K. S. E. (1997). Mixed collector systems in flotation. International Journal of Mineral Processing, 51, 67-79.
Rubio, J., Souza, M. L., Smith, R. W. (2002). Overview of flotation as a wastewater treatment technique. Minerals Engineering, 15, 139–155.
Sadeghi, M., Mokhtari, L. (2010). Rapid separation of 67,68Ga from 68Zn target using precipitation technique. Journal of Radioanalytical and Nuclear Chemistry, 284, 471–473.
Samanta, S., Ghosh, P. (2011). Coalescence of Bubbles and Stability of Foams in Brij Surfactant Systems. Industry and Engineering Chemistry Research, 50, 4484–4493.
Schweitzer, G. K., Pesterfield, L. L. (2009). The aqueous chemistry of the elements. Oxford University Press, Inc, New York.
Sebba, F. (1962). Ion Flotation, Elsevier, New York.
Sen, I.S. (2013). Platinum group element pollution is a growing concern in countries with developing economy. Environmental Science and Technology, 47 (24), 13903-13904.
Shakir, K., Elkafrawy, A. F., Ghoneimy, H. F., Beheir, S. G. E., Refaat, M. (2010). Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation. Water Research, 44, 1449–1461.
Shakir, K., Sohsah, M., Soliman, M. (2007). Removal of cesium from aqueous solutions and radioactive waste stimulants by coprecipitate flotation. Separation and Purification Technology, 54, 373–381.
Sheiham, I., Pinfold, T. A. (1968). Precipitate flotation III. Parameters of precipitate flotation of the first kind. Journal of Applied Chemistry, 18 (7), 217-221.
Strelow, F. W. E., Walt, T. N. v. d. (1987). Separation of trace amounts of indium, gallium and aluminium from each other by cation-exchange chromatography on AG50-X4 resin. Talanta, 34(10), 895–897.
Sturgill, J. A., Swartzbaugh, J. T., Randall, P. M. (1999). Pollution prevention in the semiconductor industry through recovery and recycling of gallium and arsenic from GaAs solid wastes. Clean Technologies and Environmental Policy, 1(4), 248-256.
Tait, C. D., Janecky, D. R., Rogers, P. S. Z. (1991). Speciation of aqueous palladium(II) chloride solutions using optical spectroscopies. Geochimica et Cosmichimica Acta, 55, 1253-1264.
Tanaka, A., Hirata, M., Kiyohara, Y., Nakano, M., Omae, K., Shiratani, M., Koga, K. (2010). Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films, 518, 2934-2936.
Terrazas-Rodriguez, J. E., Gutierrez-Granados, S., Alatorre-Ordaz, M. A., Leon, C. P. d., Walsh, F. C. (2011). A comparison of the electrochemical recovery of palladium using a parallel flat plate flow-by reactor and a rotating cylinder electrode reactor. Electrochimica Acta, 56, 9357– 9363.
Tolcin, A. C. (2012). Indium, Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA.
U.S. Geological Survey (2014).Mineral commodity summaries 2014: U.S. Geological Survey.
Uchida, M., Okuwaki, A. (1998). Potentiometric determination of the first hydrolysis constant of gallium(III) in NaCl solution to 100 ˚C. Journal of Solution Chemistry, 27, 965–978.
Usami, M., Nakajima, M., Mitsunaga, K., Miyajima, A., Sunouchi, M., Doi, O. (2009). Proteomic analysis of indium embryotoxicity in cultured postimplantation rat embryos. Reproductive Toxicology, 28, 477-488.
Vieira, A. M., Peres, A. E. C. (2007). The effect of amine type, pH, and size range in the flotation of quartz. Minerals Engineering, 20, 1008-1013.
Wang, L. K., Shammas, N. K., Selke, W. A., Aulenbach, D. B. (2010). Gas dissolution, release, and bubble formation in flotation systems. In Handbook of Environmental Engineering, Humana Press: New York.
Weng, X., Mei, G., Zhao, T., Zhu, Y. (2013). Utilization of novel ester-containing quaternary ammonium surfactant as cationic collector for iron ore flotation. Separation and Purification Technology, 103, 187–194.
Wood, S. A. and Middlesworth, J. v. (2004). The influence of acetate and oxalate as simple organic ligands on the behavior of palladium in surface environments. The Canadian Mineralogist, 42(2), 411-421.
Wood, S. A., Samson, I. M. (2006). The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28, 57-102.
Wood, S. A., Tait, C. D., Vlassopoulos, D., Janecky, D. R. (1994). Solubility and spectroscopic studies of the interaction of palladium with simple carboxylic and fulvic acid at low temperature. Geochimica et Cosmochinica Acta, 58, 625-637.
Wu, L., Zhang, G., Wang, Q., Hou, L., Gu, P. (2014). Removal of strontium from liquid waste using a hydraulic pellet co-precipitation microfiltration (HPC-MF) process. Desalination, 349, 31–38.
Yakovlev, Y. B., Ravlenko, L. I. (1981). Hydrolytic equilibria of the indium(III) ion in water–dioxan solutions. Russian Journal of Inorganic Chemistry, 26, 1424–1426.
Yakovlev, Y. B., Ravlenko, L. I., Barsukova, O. V. (1981). Hydrolytic equilibria for indium(III) in aqueous dimethyl sulphoxide solutions. Russian Journal of Inorganic Chemistry, 26, 817–820.
Yang, J. L., Chen, H. C. (2003). Effects of gallium on common carp (Cyprinus carpio): acute test, serum biochemistry, and erythrocyte morphology, Chemosphere, 53,
877–882.
Yot, P. G., Mear, F. O. (2011). Characterization of lead, barium and strontium leachability from foam glasses elaborated using waste cathode ray-tube glasses. Journal of Hazardous Materials, 185, 263-241.
Yuan, X. Z., Meng, Y. T., Zeng, G. M., Fang, Y. Y., Shi, J. G. (2008). Evaluation of tea-derived biosurfactant on removing heavy metal ions from dilute wastewater by ion flotation. Colloids and Surfaces A: Physicochemical and Engneering Aspects, 317, 256–261.
Yuan, Y. X., Liu, J. S., Zhou, B. X., Yao, S. Y., Li, H. M., Xu, W. X. (2010). Synthesis of coated solvent impregnated resin for the adsorption of indium (III). Hydrometallurgy, 101(3-4), 148-155
Zamboulis, D., Peleka, E. N., Lazaridis, N. K., Matis, K. A. (2011). Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. Journal of Chemical Technology and Biotechnology, 86, 335–344.
Zhang, Z. Y., Zhang, F. S. (2014). Selective recovery of palladium from waste printed circuit boards by anovel non-acid process. Journal of Hazardous Materials, 279, 46–51.
Zhao,Z., Yang, Y.X., Xiao, Y.P., Fan, Y.Q. (2012). Recovery of gallium from Bayer liquor: a Review. Hydrometallurgy, 125–126, 115–124.
Zouboulis, A. I., Jun, W., Katsoyiannis, I. A. (2003). Removal of humic acids by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 23, 181–193.
Zouboulis, A. I., Matis, K. A., Stalidis, G. A. (1990). Parameters influencing flotation in removal of metal ions. International Journal of Environmental Studies, 35, 183-196.
Zouboulis, A. I., Avranas, A. (2000). Treatment of oil-in-water emulsions by coagulation and dissolved-air flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172(1–3), 153–161.

QR CODE