簡易檢索 / 詳目顯示

研究生: 譚鈺慧
Sophia Budiarjo
論文名稱: 20個印尼主要城市住宅太陽能板安裝潛力評估
Assessment of Photovoltaic Installation Potential for the Residential Housing of 20 Major Cities in Indonesia
指導教授: 蔡欣君
Shin-Jyun Tsaih
口試委員: 施宣光
Shen-Guan Shih
​阮馨儀
Shiang-I Juan
學位類別: 碩士
Master
系所名稱: 設計學院 - 建築系
Department of Architecture
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 66
中文關鍵詞: 印尼房屋光伏安装印尼太阳能使用情况印尼光伏倾斜度
外文關鍵詞: Indonesian Housing Photovoltaics Installation, Indonesian Solar Energy Usage, Photovoltaic Tilt Degree in Indonesia
相關次數: 點閱:102下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 印度尼西亚约 85% 的电力生产使用不可再生资源,随着电力需求的增加,产量也需要增加。由于住宅消耗了约 45% 的总发电量,因此它们对这一环境可持续性问题做出了重大贡献。在建筑设计中计划安装光伏发电,以满足住宅的电力需求并减少电力生产对化石燃料的依赖。印度尼西亚全年都可以受益于该地区巨大的太阳能日照潜力。在仔细考虑和战略规划这一潜力后,将制定光伏 (PV) 表面的最佳日照增益以满足需求。
    印度尼西亚遍布数千个岛屿,尚未完全实现城镇和村庄的电气化。由于持续的城市化进程,城市变得越来越密集,住房需求也在上升。为了满足不断增长的电力需求,住宅建筑中的光伏利用是必要的。本研究选取了印度尼西亚 20 个主要城市的代表性样本,收集了每个地区住宅平均建筑面积、住宅电力需求和日照统计数据的信息。在 Grasshopper 软件中使用瓢虫扩展评估变量以获得 PV 表面安装的最佳值。
    本次评估发现,印尼光伏面倾斜度在0~20之间,30⁰后辐射增益明显下降。光伏表面的辐射产量受所在位置的云量指数影响,每个住宅的太阳能表面积和系统规模应在考虑用电行为和住宅建筑面积的情况下进行规划。


    About 85% of Indonesian electricity production uses nonrenewable resources, and as the electricity demand raises, production also needs to increase. Since residential homes consume about 45% of total electricity production, they contribute significantly to this environmental sustainability problem. The installation of photovoltaics is planned in architectural designs to cover the electricity demand of residential homes and to reduce electricity production dependency on fossil fuels. Indonesia can benefit from the location's enormous potential for solar insolation all year round. The optimal solar insolation gain on the photovoltaic (PV) surface will be made to meet the need after careful consideration and strategic planning of this potential.
    Spread into thousands of Islands, Indonesia has not yet fully electrified its towns and villages. Cities are getting denser as a result of ongoing urbanization, and housing demand is rising. To meet the rising electricity need, photovoltaic utilization in residential buildings was necessary. This study took a representative sample of 20 Indonesian major cities to gather information on the average floor area of residential homes, residential house electricity demand, and solar insolation statistics for each area. Variables are assessed with ladybug extension in grasshopper software to get the optimal value of the PV surface installation.
    This assessment discovered that the PV surface tilt degree in Indonesia is ranging from 0 to 20, with a significant radiatthe ion gain decrease after 30⁰. The radiation yield of PV surfaces is influenced by cloud cover index of the location, and each residential home's solar surface area and system size should be planned with consideration of the electricity consumption behavior as well as the residential house’s floor area.

    TABLE OF CONTENTS page ACKNOWLEDGMENTS 6 LIST OF TABLES 9 LIST OF FIGURES 10 LIST OF ABBREVIATIONS 11 ABSTRACT 12 INTRODUCTION 14 Background and Motivation 15 Research Objectives 16 Research Framework 16 Research Limitations 18 LITERATURE REVIEW 19 Solar Radiation Potential 19 Solar Energy 19 Solar Insolation as Renewable Energy Resource 20 Photovoltaics 21 Photovoltaics Types 21 Tilt Degree 24 Existing Condition 26 History of Photovoltaics Usage in Indonesia 26 Indonesian Housing and Settlement Conditions 29 METHODOLOGY 31 Location 31 Data Collection 32 Solar Radiation Data 32 Electricity Consumption Data 35 Indonesia Residential House Floor Area 38 Parametric Algorithm 39 RESULT AND DISCUSSION 42 Optimal Tilt Angle 44 Photovoltaics Surface Need 47 CONCLUSIONS 58 Future Study 59 APPENDIX A 60 APPENDIX B 61 LIST OF REFERENCES 62 BIOGRAPHICAL SKETCH 66

    Abdeen, E., Orabi, M., & Hasaneen, E. S. (2017). Optimum tilt angle for photovoltaic system in desert environment. Solar Energy, 155, 267–280. https://doi.org/10.1016/j.solener.2017.06.031
    Agency, I. E. (2020). Global Energy Review 2019. Global Energy Review 2019. https://doi.org/10.1787/90c8c125-en
    Appelbaum, J., & Aronescu, A. (2018). The effect of sky view factors on optimized photovoltaic fields. Journal of Renewable and Sustainable Energy, 10(1). https://doi.org/10.1063/1.4994625
    Badan Pusat Statistik. (2011). STATISTIK PERUMAHAN (Hasil Sensus Penduduk 2010) INDONESIA. 1–40.
    Barkhouse, D. A. R., Gunawan, O., Gokmen, T., Todorov, T. K., & Mitzi, D. B. (2015). Yield predictions for photovoltaic power plants:empirical validation,recent advances and remaining uncertainties. Progress in Photovoltaics: Research and Applications, 20(1), 6–11. https://doi.org/10.1002/pip
    Bashria A A Yousef, Ahmed A Hachicha, Ivette Rodriguez, Mohammad Ali Abdelkareem, Abrar Inyaat, Perspective on integration of concentrated solar power plants, International Journal of Low-Carbon Technologies, Volume 16, Issue 3, September 2021, Pages 1098–1125, https://doi.org/10.1093/ijlct/ctab034
    BPS. (2020). Badan Pusat Statistik Provinsi Jawa Tengah Dalam Angka 2020. 3(2), 861.
    BPS Republik Indonesia. (2010). Statistik perumahan. 38.
    Burke, P. J., Widnyana, J., Anjum, Z., Aisbett, E., Resosudarmo, B., & Baldwin, K. G. H. (2019). Overcoming barriers to solar and wind energy adoption in two Asian giants: India and Indonesia. Energy Policy, 132(July), 1216–1228. https://doi.org/10.1016/j.enpol.2019.05.055
    Cabraal, A., Cosgrove-Davies, M., & Schaeffer, L. (1996). Best practices for photovoltaic household electrification programs: Lessons from experiences in selected countries. World Bank Technical Paper, 324, 1357–1362.
    Chen, H. W., Gulo, D. P., Chao, Y. C., & Liu, H. L. (2019). Characterizing temperature-dependent optical properties of (MA0.13FA0.87) PbI3 single crystals using spectroscopic ellipsometry. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-54636-7
    Cheng, C. L., Sanchez Jimenez, C. S., & Lee, M. C. (2009). Research of BIPV optimal tilted angle, use of latitude concept for south orientated plans. Renewable Energy, 34(6), 1644–1650. https://doi.org/10.1016/j.renene.2008.10.025
    Chung, M. H. (2020). Estimating Solar Insolation and Power Generation of Photovoltaic Systems Using Previous Day Weather Data. Advances in Civil Engineering, 2020. https://doi.org/10.1155/2020/8701368
    Corcelli, F., Ripa, M., & Ulgiati, S. (2017). End-of-life treatment of crystalline silicon photovoltaic panels. An emergy-based case study. Journal of Cleaner Production, 161, 1129–1142. https://doi.org/10.1016/j.jclepro.2017.05.031
    Duffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar engineering of thermal processes, photovoltaics and wind. John Wiley & Sons.
    Fathoni, A. M., Utama, N. A., & Kristianto, M. A. (2014). A Technical and Economic Potential of Solar Energy Application with Feed-in Tariff Policy in Indonesia. Procedia Environmental Sciences, 20, 89–96. https://doi.org/10.1016/j.proenv.2014.03.013
    George, A., & Anto, R. (2012). Analytical and experimental analysis of optimal tilt angle of solar photovoltaic systems. 2012 International Conference on Green Technologies, ICGT 2012, 234–239. https://doi.org/10.1109/ICGT.2012.6477978
    Gulo, D. P., Hung, N. T., Yang, T. J., Shu, G. J., Saito, R., & Liu, H. L. (2022). Exploring unusual temperature-dependent optical properties of graphite single crystal by spectroscopic ellipsometry. Carbon, 197(January), 485–493. https://doi.org/10.1016/j.carbon.2022.06.032
    Gulo, D. P., Yeh, H., Chang, W. H., & Liu, H. L. (2020). Temperature-dependent optical and vibrational properties of PtSe2 thin films. Scientific Reports, 10(1), 1–12. https://doi.org/10.1038/s41598-020-76036-y
    Gyamfi, S., Krumdieck, S., & Urmee, T. (2013). Residential peak electricity demand response - Highlights of some behavioural issues. Renewable and Sustainable Energy Reviews, 25, 71–77. https://doi.org/10.1016/j.rser.2013.04.006
    Hanna, S. (1979). Saving Energy in the Home: Princeton’s Experiment at Twin Rivers. Housing and Society, 6(2), 129–130. https://doi.org/10.1080/08882746.1979.11429831
    Jungbluth, N., Stucki, M., Frischknecht, R., Tuchschmid, M., Doka, G., & Vollmer, M. (2009). Life-cycle inventories - Photovoltaics. Swiss Centre for Life Cycle Inventories, Dübendorf, CH, 6–XII.
    Jurasz, J., & Campana, P. E. (2019). The potential of photovoltaic systems to reduce energy costs for office buildings in time-dependent and peak-load-dependent tariffs. Sustainable Cities and Society, 44(July 2018), 871–879. https://doi.org/10.1016/j.scs.2018.10.048
    Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., & Kim, K. H. (2018). Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews, 82(August 2017), 894–900. https://doi.org/10.1016/j.rser.2017.09.094
    Kassem, D. (2018). Electrification and Industrial Development in Indonesia. June.
    Kewo, A., Manembu, P., Liu, X., & Nielsen, P. S. (2018). Statistical Analysis for Factors Influencing Electricity Consumption at Regional Level. 2018 IEEE 7th International Conference on Power and Energy, PECon 2018, 132–137. https://doi.org/10.1109/PECON.2018.8684037
    Lai, C. S., Jia, Y., McCulloch, M. D., & Xu, Z. (2017). Daily Clearness Index Profiles Cluster Analysis for Photovoltaic System. IEEE Transactions on Industrial Informatics, 13(5), 2322–2332. https://doi.org/10.1109/TII.2017.2683519
    Memon, Q. A., Rahimoon, A. Q., Ali, K., Shaikh, M. F., & Shaikh, S. A. (2021). Determining Optimum Tilt Angle for 1 MW Photovoltaic System at Sukkur, Pakistan. International Journal of Photoenergy, 2021. https://doi.org/10.1155/2021/5552637
    Modjo, S. (2020). PLN vs Energi Terbarukan: Peraturan Menteri ESDM Terkait Penggunaan Sistem Pembangkit Listrik Tenaga Surya Atap. Jurnal Hukum Lingkungan Indonesia, 6(1), 19–40. https://doi.org/10.38011/jhli.v6i1.89
    Muhida, R., Mostavan, A., Sujatmiko, W., Park, M., & Matsuura, K. (2001). 10 Years operation of a PV-micro-hydro hybrid system in Taratak, Indonesia. Solar Energy Materials and Solar Cells, 67(1–4), 621–627. https://doi.org/10.1016/S0927-0248(00)00334-2
    Pavlovic, T. (2020). The Sun and Photovoltaic Technologies. https://doi.org/10.1007/978-3-030-22403-5
    Ramanujam, J., Bishop, D. M., Todorov, T. K., Gunawan, O., Rath, J., Nekovei, R., Artegiani, E., & Romeo, A. (2020). Flexible CIGS, CdTe and a-Si:H based thin film solar cells: A review. Progress in Materials Science, 110(November 2019), 1–20. https://doi.org/10.1016/j.pmatsci.2019.100619
    Roudsari, M. S., & Pak, M. (2013). Ladybug: A parametric environmental plugin for grasshopper to help designers create an environmentally-conscious design. Proceedings of BS 2013: 13th Conference of the International Building Performance Simulation Association, 3128–3135. https://doi.org/10.26868/25222708.2013.2499
    Schock, H. W. (1996). Thin film photovoltaics. Applied Surface Science, 92, 606–616. https://doi.org/10.1016/0169-4332(95)00303-7
    Schuster, C. S. (2020). The quest for the optimum angular-tilt of terrestrial solar panels or their angle-resolved annual insolation. Renewable Energy, 152, 1186–1191. https://doi.org/10.1016/j.renene.2020.01.076
    Shahsavari, A., & Akbari, M. (2018). Potential of solar energy in developing countries for reducing energy-related emissions. Renewable and Sustainable Energy Reviews, 90(April), 275–291. https://doi.org/10.1016/j.rser.2018.03.065
    Sonderegger, R. C. (1978). Movers and stayers: The resident’s contribution to variation across houses in energy consumption for space heating. Energy and Buildings, 1(3), 313–324. https://doi.org/10.1016/0378-7788(78)90011-7
    Suparyanto dan Rosad (2015. (2020). Local Dynamics in Informal Settlement Development. Suparyanto Dan Rosad (2015, 5(3), 248–253.
    Syahputra, R., & Soesanti, I. (2020). Planning of hybrid micro-hydro and solar photovoltaic systems for rural areas of central Java, Indonesia. Journal of Electrical and Computer Engineering, 2020. https://doi.org/10.1155/2020/5972342
    Tsalides, P., & Thanailakis, A. (1985). Direct computation of the array optimum tilt angle in constant-tilt photovoltaic systems. Solar Cells, 14(1), 83–94. https://doi.org/10.1016/0379-6787(85)90008-0

    QR CODE