簡易檢索 / 詳目顯示

研究生: CHANDRAWATI PUTRI WULANDARI
CHANDRAWATI PUTRI WULANDARI
論文名稱: 運用非異常稀有關聯規則探勘於腦血管檢查資料集 中勘擷取生產規則
Extracting Production Rules for Cerebrovascular Examination Dataset through Mining of Non-Anomalous Rare Association Rules
指導教授: 歐陽超
Chao Ou-Yang
口試委員: 歐陽超
Chao Ou-Yang
郭人介
Ren-Jieh Kuo
王孔政
Kung-Jeng Wang
徐建業
Chien-Yeh Hsu
阮業春
Yeh-Chun Juan
學位類別: 博士
Doctor
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 105
中文關鍵詞: 生產規則係統非冗餘關聯規則基於規則的系統罕見的關聯規則非異常規則
外文關鍵詞: production rule system, non-redundant association rules, rule-based system, rare association rules, non-anomalous rules, cerebrovascular examination dataset
相關次數: 點閱:173下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在醫療領域,患者通過電子健康記錄(EHR)生成大量的健康記錄。提取患者病理狀況或診斷的有用知識對於基於規則的系統中的推理過程至關重要,以支持臨床決策過程。已知關聯規則挖掘能夠發現隱藏的有趣知識以及數據集(包括醫學數據集)中屬性之間的關係。關於關聯規則挖掘的大多數研究都集中在根據數據集中出現的最頻繁項發現頻繁模式。但是,提取稀有規則的過程很少受到關注。在醫學數據集研究中,稀有關聯規則(RAR)的發現更具挑戰性,因為它很可能會用於為醫生獲取更多潛在的稀有和不尋常的知識。而且,ARM更可能產生許多異常規則,這會導致邏輯錯誤並影響基於規則的系統的推理過程。因此,挑戰在於開發一種方法來提取簡潔的稀有規則庫,消除稀有模式中的異常規則以及從數據集中找到最全面的規則。
在這項研究中,我們通過幾個步驟從腦血管檢查數據集生成非異常稀有關聯規則(NA-RAR):獲取頻繁的封閉項目集,生成關聯規則庫,進行異常檢查以適合規則中的生產規則(PR)。基於系統。實驗表明,與傳統方法相比,該方法消除了許多異常規則,同時縮短了計算時間。此外,它可以發現一組非異常稀有關聯規則(NA-RAR)和類稀有關聯規則,以提供潛在的有意義的知識來支持用戶域的臨床決策過程。


In medical field, patients generate massive amount of health records through electronic health records (EHRs). Extracting usable knowledge of patients’ pathological conditions or diagnoses is essential for reasoning process in rule-based systems to support the process of clinical decision making. Association rule mining is known capable to discover hidden interesting knowledge and relationships among attributes in dataset, including medical dataset. Most research on association rule mining focuses on discovering frequent patterns based on the most frequent items occurring in the dataset. However, the process of extracting rare rules has received less attention. In medical dataset studies, the discovery of rare association rules (RARs) is more challenging, because it could likely be used to obtain more potentially rare and unusual knowledge for physicians. Moreover, ARM more likely to produce many anomalous rules, which lead to logical errors and affect the reasoning process of rule-based systems. Therefore, the challenge is to develop a method to extract concise rare rule-bases, to eliminate anomalous rule in rare patterns, and also to find the most comprehensive rules from the dataset.
In this study, we generate non-anomalous rare association rules (NA-RARs) from cerebrovascular examination dataset through several steps: obtaining infrequent closed itemset, generating rare association rules-bases, anomalies checking, to fit production rules (PRs) in rule-based systems. Experiment showed that the proposed method eliminated a significant number of anomalous rules while improving computational time, compared with the traditional method. Moreover, it could discover a set of non-anomalous rare association rules (NA-RARs) and class rare association rules to provide potential meaningful knowledge to support the process of clinical decision making by user domain.

ABSTRACT ........................................................ ii ACKNOWLEDGEMENT ................................................. iii TABLE OF CONTENT ................................................ iv LIST OF ABBREVIATIONS ........................................... vi LIST OF TABLES .................................................. vii LIST OF FIGURES ................................................. viii CHAPTER 1 INTRODUCTION .......................................... 1 Research Motivation ............................................. 1 Frequent and Infrequent ARM...................................... 2 The Importance of Discretizing Continuous Attributes ............ 3 Relationship of Association Rules with Production Rule Systems .. 5 Anomalies in Rules .............................................. 6 Research Objective .............................................. 8 Structure of Dissertation ....................................... 8 CHAPTER 2 LITERATURE REVIEW ..................................... 10 Cerebrovascular Disease ......................................... 10 Data Mining and Knowledge Discovery in Databases (KDD) .......... 12 Data Preprocessing .............................................. 13 Discretization of Continuous Attribute .......................... 13 Association Rule Mining (ARM) ................................... 15 Association Rule Mining in Medical Domain ....................... 16 Rare Association Rules Mining (RARM) ............................ 17 Production Rules as Rule-based Knowledge Bases in Expert Systems 18 Production Rules (PRs) .......................................... 20 Quality of Knowledge Bases ...................................... 21 Types of Anomalies in Rule-based Knowledge Bases ................ 21 Circular Rules .................................................. 22 Redundant rules ................................................. 23 Studies on Mining Non-Redundant Association Rules (NRARs) ....... 26 CHAPTER 3 METHODOLOGY ........................................... 28 Data Collection and Notations ................................... 28 Data Preprocessing .............................................. 31 Proposed Method ................................................. 33 Mutual Information–based Discretization ........................ 35 Definitions...................................................... 38 Interestingness Measure in NA-RARs as PRs ....................... 44 Mining Non-Anomalous Rare Association Rules Algorithm ........... 49 CHAPTER 4 RESULT AND ANALYSIS ................................... 56 Data Discretization ............................................. 56 Performance Evaluation .......................................... 58 Analyzing the Example of Non-Anomalous Rare Association Rules ........ 64 Analyzing the Example of Non-Anomalous Class Rare Association Rules .. 70 CHAPTER 5 CONCLUSION AND FUTURE WORK ................................. 77 REFERENCES ........................................................... 79 APPENDIXES ........................................................... 85 Appendix 1. Discretization Process of Attribute ‘Age’ .............. 86 Appendix 2. Result of Non-Anomalous Rare Association Rules ........... 90 Appendix 3. Result of Class Rare Association Rules ................... 91

Aggarwal, C. C., & Yu, P. S. (1999). Data Mining Techniques for Associations, Clustering and Classification. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp. 13–23). Springer. https://doi.org/10.1007/3-540-48912-6_4
Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data - SIGMOD ’93 (Vol. 22, pp. 207–216). New York, New York, USA: ACM Press. https://doi.org/10.1145/170035.170072
Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules. In VLDB ’94: Proceedings of the 20th International Conference on Very Large Data Bases (Vol. 1215, pp. 487–499). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Retrieved from http://dl.acm.org/citation.cfm?id=645920.672836
Arman, N. (2013). Improving Rule Base Quality to Enhance Production Systems Performance. International Journal of Intelligence Science, 03(01), 1–4. https://doi.org/10.4236/ijis.2013.31001
Ashrafi, M. Z., Taniar, D., & Smith, K. (2005). Redundant Association Rules Reduction Techniques. In S. Zhang & R. Jarvis (Eds.), International Journal of Business Intelligence and Data Mining (Vol. 2, pp. 254–263). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/11589990_28
Ashrafi, M. Z., Taniar, D., & Smith, K. (2007). Redundant association rules reduction techniques. International Journal of Business Intelligence and Data Mining, 2(1), 29–63.
Awad, E. M., & Ghaziri, H. M. (2004). Knowledge Management. Prentice Hall. Retrieved from https://books.google.com.tw/books?id=F4uCQgAACAAJ
Bastide, Y., Pasquier, N., Taouil, R., Stumme, G., & Lakhal, L. (2000). Mining minimal non-redundant association rules using frequent closed itemsets. In International Conference on Computational Logic (pp. 972–986). Springer.
Berzal, F., Blanco, I., Sánchez, D., & Vila, M.-A. (2002). Measuring the accuracy and interest of association rules: A new framework. Intelligent Data Analysis, 6(3), 221–235.
Bewick, V., Cheek, L., & Ball, J. (2004). Statistics review 11: assessing risk. Critical Care (London, England), 8(4), 287–291. https://doi.org/10.1186/cc2908
Bowman, T. S., Sesso, H. D., Ma, J., Kurth, T., Kase, C. S., Stampfer, M. J., & Gaziano, J. M. (2003). Cholesterol and the Risk of Ischemic Stroke. Stroke, 34(12), 2930–2934. https://doi.org/10.1161/01.STR.0000102171.91292.DC
Brachman, R. J., & Levesque, H. J. (2004). Knowledge Representation and Reasoning. Elsevier. https://doi.org/10.1016/B978-1-55860-932-7.X5083-3
Bramer, M. (Ed.). (2007). Continuous Attributes. In Principles of Data Mining (pp. 93–118). London: Springer London. https://doi.org/10.1007/978-1-84628-766-4_7
Bruha, I. (2001). Pre- and Post-processing in Machine Learning and Data Mining. In G. Paliouras, V. Karkaletsis, & C. D. Spyropoulos (Eds.), Machine Learning and Its Applications (pp. 258–266). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-44673-7_13
Chaves, R., Ramírez, J., & Górriz, J. M. (2013). Integrating discretization and association rule-based classification for Alzheimer’s disease diagnosis. Expert Systems with Applications, 40(5), 1571–1578. https://doi.org/10.1016/j.eswa.2012.09.003
Cohen, R., Aviram, I., Elhadad, M., & Elhadad, N. (2014). Redundancy-aware topic modeling for patient record notes. PLoS ONE, 9(2), 1–7. https://doi.org/10.1371/journal.pone.0087555
Cohen, R., Elhadad, M., & Elhadad, N. (2013). Redundancy in electronic health record corpora: Analysis, impact on text mining performance and mitigation strategies. BMC Bioinformatics, 14(1), 1–15. https://doi.org/10.1186/1471-2105-14-10
Cullen, C. E., Carter, G. T., Weiss, M. D., Grant, P. A., & Saperstein, D. S. (2012). Hypohomocysteinemia: A Potentially Treatable Cause of Peripheral Neuropathology? Physical Medicine and Rehabilitation Clinics of North America, 23(1), 59–65. https://doi.org/10.1016/j.pmr.2011.11.001
de Sá, C. R., Soares, C., & Knobbe, A. (2016). Entropy-based discretization methods for ranking data. Information Sciences, 329, 921–936. https://doi.org/10.1016/j.ins.2015.04.022
Dougherty, J., Kohavi, R., & Sahami, M. (1995). Supervised and Unsupervised Discretization of Continuous Features. In Machine Learning Proceedings 1995 (pp. 194–202). Elsevier. https://doi.org/10.1016/B978-1-55860-377-6.50032-3
Fayyad, U., & Irani, K. (1993). Multi-interval discretization of continuous-valued attributes for classification learning.
Gago, P., Santos, M. F., Silva, A., Cortez, P., Neves, J., & Gomes, L. (2005). INTCare: a Knowledge Discovery Based Intelligent Decision Support System for Intensive Care Medicine. Journal of Decision Systems, 14(3), 241–259. https://doi.org/10.3166/jds.14.241-259
García, E., Romero, C., Ventura, S., & Calders, T. (2007). Drawbacks and solutions of applying association rule mining in learning management systems. In Proceedings of the International Workshop on Applying Data Mining in e-Learning (ADML 2007), Crete, Greece (pp. 13–22).
Garcia, S., Luengo, J., Sáez, J. A., Lopez, V., & Herrera, F. (2013). A survey of discretization techniques: Taxonomy and empirical analysis in supervised learning. IEEE Transactions on Knowledge and Data Engineering, 25(4), 734–750.
Grahne, G., & Zhu, J. (2005). Fast algorithms for frequent itemset mining using FP-trees. IEEE Transactions on Knowledge and Data Engineering, 17(10), 1347–1362. https://doi.org/10.1109/TKDE.2005.166
Han, J. (2011). Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems) (3rd ed.). Morgan Kaufmann Publishers Inc. Retrieved from http://www.amazon.co.uk/Data-Mining-Concepts-Techniques-Management/dp/0123814790
Han, J., Kamber, M., & Pei, J. (2012). 1 - Introduction BT - Data Mining (Third Edition). In The Morgan Kaufmann Series in Data Management Systems (pp. 1–38). Boston: Morgan Kaufmann. https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00001-0
Hancock, M., & Kent, P. (2016). Interpretation of dichotomous outcomes: risk, odds, risk ratios, odds ratios and number needed to treat. Journal of Physiotherapy, 62(3), 172–174.
Hoque, N., Nath, B., & Bhattacharyya, D. K. (2012). A new approach on rare association rule mining. International Journal of Computer Applications, 53(3).
Hyndman, R. J. (1995). The problem with sturges’ rule for constructing histograms.
Ikram, A., & Qamar, U. (2014). A rule-based expert system for earthquake prediction. Journal of Intelligent Information Systems, 43(2), 205–230.
Ikram, A., & Qamar, U. (2015). Developing an expert system based on association rules and predicate logic for earthquake prediction. Knowledge-Based Systems, 75, 87–103. https://doi.org/10.1016/j.knosys.2014.11.024
Immanuel, S., Giantini, A., & Dharma, R. S. (2006). The role of lipid profile as a risk factor indicator for ischemic stroke at Cipto Mangunkusumo Hospital, Jakarta. Acta Medica Indonesiana, 38(1), 11–16. https://doi.org/10.1267/science.040579197
Jha, R., & Singh, T. (2018). Multinomial logistic regression for breast thermogram
classification. Proceedings of the 2017 IEEE International Conference on Communication and Signal Processing, ICCSP 2017, 2018-Janua, 1266–1271. https://doi.org/10.1109/ICCSP.2017.8286584
Jiménez, A., Berzal, F., & Cubero, J.-C. (2010). Interestingness measures for association rules within groups. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 298–307). Springer.
Jin, L., Liu, J., Xu, Y., & Fang, X. (2015). A novel rule base representation and its inference method using the evidential reasoning approach. Knowledge-Based Systems, 87, 80–91. https://doi.org/10.1016/j.knosys.2015.06.018
Kerber, R. (1992). Chimerge: Discretization of numeric attributes. Proceedings of the Tenth National Conference on Artificial Intelligence, 123–128. Retrieved from http://dl.acm.org/citation.cfm?id=1867154%5Cnpapers2://publication/uuid/F1C11C06-12F0-4A83-82D3-CC62A52FBE75
Kong, H., Jong, C., & Ryang, U. (2016). Rare Association Rule Mining for Network Intrusion Detection. CoRR, abs/1610.0. Retrieved from http://arxiv.org/abs/1610.04306
Li, J., Li, H., Wong, L., Pei, J., & Dong, G. (2006). Minimum description length principle: Generators are preferable to closed patterns. Aaai, 21(1), 409. Retrieved from http://www.aaai.org/Papers/AAAI/2006/AAAI06-065.pdf
Li, Jiuyong, Fu, A. W., & Fahey, P. (2009). Efficient discovery of risk patterns in medical data. Artificial Intelligence in Medicine, 45(1), 77–89.
Li, Jiuyong, Fu, A. W., He, H., Chen, J., Jin, H., McAullay, D., … Kelman, C. (2005). Mining risk patterns in medical data. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining (pp. 770–775). ACM.
Litiquat Majeed Sheikh, B. T. (2004). Interesting measures for mining association rules. In 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004. (pp. 641–644). IEEE. https://doi.org/10.1109/INMIC.2004.1492964
Liu, H., Hussain, F., Tan, C. L., & Dash, M. (2002). Discretization: An enabling technique. Data Mining and Knowledge Discovery, 6(4), 393–423.
Loum, M. A., Poursat, M.-A., Sow, A., Sall, A. A., Loucoubar, C., & Gassiat, E. (2019). Multinomial Logistic Model for Coinfection Diagnosis Between Arbovirus and Malaria in Kedougou. The International Journal of Biostatistics, 0(0). https://doi.org/10.1515/ijb-2017-0015
Lu, Y., Richter, F., & Seidl, T. (2018). Efficient Infrequent Itemset Mining Using Depth-First and Top-Down Lattice Traversal. In J. Pei, Y. Manolopoulos, S. Sadiq, & J. Li (Eds.) (Vol. 10827, pp. 908–915). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-91452-7_58
Lu, Y., & Seidl, T. (2018). Towards Efficient Closed Infrequent Itemset Mining Using Bi-Directional Traversing. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) (pp. 140–149). IEEE. https://doi.org/10.1109/DSAA.2018.00024
Luna, J. M., Romero, C., Romero, J. R., & Ventura, S. (2015). An evolutionary algorithm for the discovery of rare class association rules in learning management systems. Applied Intelligence, 42(3), 501–513.
Mitchell, T. M. (1997). Machine Learning (1st ed.). New York, NY, USA: McGraw-Hill, Inc.
Nahar, J., Imam, T., Tickle, K. S., & Chen, Y.-P. P. (2013). Association rule mining to detect factors which contribute to heart disease in males and females. Expert Systems with Applications, 40(4), 1086–1093. https://doi.org/http://dx.doi.org/10.1016/j.eswa.2012.08.028
National Institute of Neurological Disorder and Stroke. (2013). Stroke: Hope Through Research. Retrieved from http://www.ninds.nih.gov/disorders/stroke/detail_stroke.htm
Negnevitsky, M. (2005). Artificial Intelligence (2nd Ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
Noguchi, Y., Ueno, A., Otsubo, M., Katsuno, H., Sugita, I., Kanematsu, Y., … Teramachi, H. (2018). A New Search Method Using Association Rule Mining for Drug-Drug Interaction Based on Spontaneous Report System. Frontiers in Pharmacology, 9(MAR), 1–9. https://doi.org/10.3389/fphar.2018.00197
Nuwangi, S. M., Oruthotaarachchi, C. R., Tilakaratna, J. M. P. P., & Caldera, H. A. (2010). Usage of association rules and classification techniques in knowledge extraction of diabetes. In 2010 6th International Conference on Advanced Information Management and Service (IMS) (pp. 372–377). IEEE.
Ou-Yang, C., Agustianty, S., & Wang, H. C. (2013). Developing a data mining approach to investigate association between physician prescription and patient outcome - A study on re-hospitalization in Stevens-Johnson Syndrome. Computer Methods and Programs in Biomedicine, 112(1), 84–91. https://doi.org/10.1016/j.cmpb.2013.07.004
Pal, M. (2012). Multinomial logistic regression-based feature selection for hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 14(1), 214–220. https://doi.org/10.1016/j.jag.2011.09.014
Parizadeh, D., Ramezankhani, A., Momenan, A. A., Azizi, F., & Hadaegh, F. (2017). Exploring risk patterns for incident ischemic stroke during more than a decade of follow-up: A survival tree analysis. Computer Methods and Programs in Biomedicine, 147(24), 29–36. https://doi.org/10.1016/j.cmpb.2017.06.006
Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999a). Discovering Frequent Closed Itemsets for Association Rules. In International Conference on Database Theory (pp. 398–416). https://doi.org/10.1007/3-540-49257-7_25
Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L. (1999b). Efficient mining of association rules using closed itemset lattices. Information Systems, 24(1), 25–46. https://doi.org/10.1016/S0306-4379(99)00003-4
Pasquier, N., Taouil, R., Bastide, Y., Stumme, G., & Lakhal, L. (2005). Generating a Condensed Representation for Association Rules. Journal of Intelligent Information Systems, 24(1), 29–60. https://doi.org/10.1007/s10844-005-0266-z
Pei, J., Han, J., & Mao, R. (2000). Closet: An efficient algorithm for mining frequent closed itemsets. In ACM SIGMOD workshop on research issues in data mining and knowledge discovery (Vol. 4, pp. 21–30).
Piri, S., Delen, D., Liu, T., & Paiva, W. (2018). Development of a new metric to identify rare patterns in association analysis: The case of analyzing diabetes complications. Expert Systems with Applications, 94, 112–125. https://doi.org/10.1016/j.eswa.2017.09.061
Podgorelec, V., Kokol, P., Stiglic, M. M., Heričko, M., & Rozman, I. (2005). Knowledge discovery with classification rules in a cardiovascular dataset. Computer Methods and Programs in Biomedicine, 80, S39–S49. https://doi.org/10.1016/S0169-2607(05)80005-7
Potes Ruiz, P., Kamsu Foguem, B., & Grabot, B. (2014). Generating knowledge in maintenance from Experience Feedback. Knowledge-Based Systems, 68, 4–20. https://doi.org/10.1016/j.knosys.2014.02.002
Romero, C., Romero, J. R., Luna, J. M., & Ventura, S. (2010). Mining rare association rules from e-learning data. In Educational Data Mining 2010.
Sahoo, J., Das, A. K., & Goswami, A. (2015). An efficient approach for mining association rules from high utility itemsets. Expert Systems with Applications, 42(13), 5754–5778.
Schmolze, J. G., & Snyder, W. (1999). Detecting redundancy among production rules using term rewrite semantics. Knowledge-Based Systems, 12(1–2), 3–11. https://doi.org/10.1016/S0950-7051(99)00003-9
Sene, A., Kamsu-Foguem, B., & Rumeau, P. (2018). Discovering frequent patterns for in-flight incidents.
Séverac, F., Sauleau, E. A., Meyer, N., Lefèvre, H., Nisand, G., & Jay, N. (2015). Non-redundant association rules between diseases and medications: an automated method for knowledge base construction. BMC Medical Informatics and Decision Making, 15(1), 29. https://doi.org/10.1186/s12911-015-0151-9
Shortliffe, E. H., & Buchanan, B. G. (1975). A model of inexact reasoning in medicine. Mathematical Biosciences, 23(3–4), 351–379.
Silva, G. S., Koroshetz, W. J., González, R. G., & Schwamm, L. H. (2011). Causes of Ischemic Stroke BT - Acute Ischemic Stroke: Imaging and Intervention. In R. G. González, J. A. Hirsch, M. H. Lev, P. W. Schaefer, & L. H. Schwamm (Eds.) (pp. 25–42). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-12751-9_2
Simon, G. J., Schrom, J., Castro, M. R., Li, P. W., & Caraballo, P. J. (2013). Survival association rule mining towards type 2 diabetes risk assessment. In AMIA Annual Symposium Proceedings (Vol. 2013, p. 1293). American Medical Informatics Association.
Stare, J., & Maucort-Boulch, D. (2016). Odds Ratio, Hazard Ratio and Relative Risk. Metodoloski Zvezki, 13(1), 59.
Szathmary, L., Napoli, A., & Valtchev, P. (2007). Towards rare itemset mining. Proceedings - International Conference on Tools with Artificial Intelligence, ICTAI, 1, 305–312. https://doi.org/10.1109/ICTAI.2007.30
Szathmary, L., Valtchev, P., & Napoli, A. (2010). Generating Rare Association Rules Using the Minimal Rare Itemsets Family. Int J Software Informatics International Journal of Software and Informatics Int J Software Informatics, 4(43), 219–238.
Tan, P.-N. (2006). Introduction to data mining. Pearson Education India.
Tan, P.-N., Kumar, V., & Srivastava, J. (2004). Selecting the right objective measure for association analysis. Information Systems, 29(4), 293–313. https://doi.org/10.1016/S0306-4379(03)00072-3
Troiano, L., Scibelli, G., & Birtolo, C. (2009). A Fast Algorithm for Mining Rare Itemsets. In 2009 Ninth International Conference on Intelligent Systems Design and Applications (pp. 1149–1155). IEEE. https://doi.org/10.1109/ISDA.2009.55
Turban, E., & Frenzel, L. E. (1992). Expert systems and applied artificial intelligence. Prentice Hall Professional Technical Reference.
Vo, B., Hong, T.-P., & Le, B. (2013). A lattice-based approach for mining most generalization association rules. Knowledge-Based Systems, 45, 20–30. https://doi.org/10.1016/j.knosys.2013.02.003
Vo, B., & Le, B. (2009). Fast algorithm for mining minimal generators of frequent closed itemsets and their applications. 2009 International Conference on Computers & Industrial Engineering, (l), 1407–1411. https://doi.org/10.1109/iccie.2009.5223846
Wand, M. P. (1997). Data-based choice of histogram bin width. The American Statistician, 51(1), 59–64.
Wang, C.-H., Lee, T.-Y., Hui, K.-C., & Chung, M.-H. (2019). Mental disorders and medical comorbidities: Association rule mining approach. Perspectives in Psychiatric Care, (July 2018), 1–10. https://doi.org/10.1111/ppc.12362
Wang, J., Han, J., & Pei, J. (2003). Closet+: Searching for the best strategies for mining frequent closed itemsets. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 236–245). ACM.
Wang, Z. (2013). Converting odds ratio to relative risk in cohort studies with partial data information. J Stat Softw, 55(5), 1–11.
Wei, H. (2009). A Novel Multivariate Discretization Method for Mining Association Rules. In 2009 Asia-Pacific Conference on Information Processing (Vol. 1, pp. 378–381). IEEE. https://doi.org/10.1109/APCIP.2009.102
Wittenauer, R., & Smith, L. (2012). Ischaemic and Haemorrhagic Stroke. Priority Medicines for Europe and the World “A Public Health Approach to Innovation”.Background Paper 6.6 Ischaemic and Haemorrhagic Stroke, (December), 46.
Wulandari, C. P., Ou-Yang, C., & Wang, H.-C. (2019). Applying mutual information for discretization to support the discovery of rare-unusual association rule in cerebrovascular examination dataset. Expert Systems with Applications, 118, 52–64. https://doi.org/10.1016/j.eswa.2018.09.044
Xiaogang Wang, Yuewei Bai, Chilan Cai, & Xiaoguang Yan. (2010). A production rule-based knowledge system for software quality evaluation. In 2010 2nd International Conference on Computer Engineering and Technology (Vol. 6, pp. V6-208-V6-211). IEEE. https://doi.org/10.1109/ICCET.2010.5486303
Xu, Y., & Li, Y. (2007). Mining non-redundant association rules based on concise bases. International Journal of Pattern Recognition and Artificial Intelligence, 21(04), 659–675.
Y.Bhat, U., & A. Patel, P. (2014). A Recent Overview: Rare Association Rule Mining. International Journal of Computer Applications, 107(18), 1–4. https://doi.org/10.5120/18848-9893
Zaki, F. A. M., & Zulkurnain, N. F. (2019). Frequent itemset mining in high dimensional data: A review. Lecture Notes in Electrical Engineering, 481, 325–334. https://doi.org/10.1007/978-981-13-2622-6_32
Zaki, M. J. (2004). Mining non-redundant association rules. Data Mining and Knowledge Discovery, 9(3), 223–248.
Zaki, M. J., & Hsiao, C.-J. (2002). CHARM: An Efficient Algorithm for Closed Itemset Mining. In Proceedings of the 2002 SIAM International Conference on Data Mining (pp. 457–473). Philadelphia, PA: Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.9781611972726.27
Zaki, M. J., & Hsiao, C. J. (2005). Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transactions on Knowledge and Data Engineering, 17(4), 462–478. https://doi.org/10.1109/TKDE.2005.60
Zhang, Y., & Deng, A. (2016). Redundancy Reduction Algorithms in Rule-Based Knowledge Bases. International Journal of Pattern Recognition and Artificial Intelligence, 30(09), 1660011. https://doi.org/10.1142/S0218001416600119
Zhao, Q., & Bhowmick, S. S. (2003). Association rule mining: A survey. Nanyang Technological University, Singapore.
Zhu, X., Zhang, L., Zhang, Y., Wang, L., Wang, S., & Liu, P. (2019). Research on Classification of Tibetan Medical Syndrome in Chronic Atrophic Gastritis. Applied Sciences, 9(8), 1664. https://doi.org/10.3390/app9081664

QR CODE