簡易檢索 / 詳目顯示

研究生: 曾加宏
Chia-hung Tseng
論文名稱: 壓電無閥角錐式流道微幫浦之研發
Development of Piezoelectric Valveless Micropump with Pyramidal Channel
指導教授: 鄭逸琳
Yih-Lin Cheng
口試委員: 張復瑜
Fuh-Yu Chang
孫珍理
Chen-li Sun
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 150
中文關鍵詞: 壓電蜂鳴片SDM製程無閥式微幫浦角錐式擴散器
外文關鍵詞: valveless micropump, pyramidal diffuser, SDM(Shape Deposition Manufacturing), piezoelectric buzzer
相關次數: 點閱:245下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前國內外微幫浦相關研究,大多數以微機電的製程技術來製作無閥式微幫浦的微流道,幾何形狀只能達到2.5D的特徵,進出口流道的位置與方向,亦受到限制。本研究以推動微小水下載具之需求,開發進出口流道相互垂直之無閥式微幫浦,設計與製作3D角錐式微流道。同時為了流體能較順暢進出流道,入口流道將加入一傾斜角度,以提升微幫浦之效能。
    本研究3D角錐式微流道的設計,探討不同擴散角(10°、20°、30°、40°、50°)及不同入口傾斜角度(5°、10°、15°、20°、25°)之影響。以層加工法中SDM(Shape Deposition Manufacturing)製程,將3D模型透過CAD/CAM軟體,進行最佳切層與加工規畫,並以高分子聚合物為主要材料,蠟材為支撐材料,使用高速數控工具機,切削出各層之幾何特徵。微幫浦得設計採四進一出,最小尺寸在入口流道入口端為160μm×160μm,微幫浦的外型尺寸為直徑13.62mm,腔室直徑為8.5mm,厚度為3mm,並採用成本低廉的壓電蜂鳴片為驅動元件。為有效固定壓電鳴蜂片及配合量測需求,本研究亦設計並製作出封裝元件及量測平台,搭配量測儀器進行微幫浦的效能測試,輸入方波電壓為50 V。測試後的結果顯示,在固定擴散角為10°時,入口傾斜角度以20°較佳,最大流量為1100Hz下的1207.44μl/min;無入口傾斜角度時,擴散角則以20°時為最佳,驅動頻率為1100 Hz時,可達最大流量1599.91μl/min。


    Most researches in valveless micropump utilized MEMS processes to fabricate channels. Due to the process limitation, the geometry features can only be 2.5D. Also, the location and the direction of inlets and outlets are restricted. In this research, based on the need for propelling a micro-scale underwater vehicle, micropumps with inlets perpendicular to outlet were developed. A 3D pyramidal channel design was adopted. Moreover, in order to smooth the flow from inlet to outlet, a slant angle was added at inlets.
    In the 3D pyramidal channel design, different diffuser angles (10, 20, 30, 40, and 50 degrees) and slang angles at inlets (5, 10, 15, 20, and 25 degrees) were investigated. SDM (Shape Deposition Manufacturing) process, a layered manufacturing technique, was used to fabricate micropumps. The 3D CAD models were sliced and process-planned in CAD/CAM software. In each layer, with polymer as part material and wax as support material, the features were defined by a CNC machine after material deposition. The micropump had 4 inlets and 1 outlet with minimal dimension of 160 × 160μm at inlet entrance. The outer diameter of the micropump was 13.62mm, and the chamber was 8.5mm in diameter and 3mm thick. A low-cost piezoelectric buzzer was used to trigger the micropump. Besides, in order to fix the buzzer and to satisfy the measurement need, the packaging/assembly component and measurement platform were developed. The tests were conducted at input voltage of 50V. As a result, when the diffuser angle was 10 degrees, slant angle of 20 degrees is preferred with the flow rate of 1207.44μl/min at 1100 Hz. Without slant angle, the diffuser angle of 20 degrees was the best. The maximal flow rate was 1599.91 μl/min at 1100 Hz.

    摘要I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 符號表 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究方法 4 1.4 論文架構 7 第二章 文獻回顧與探討 8 2.1 幫浦分類 8 2.2 微幫浦簡介 9 2.2.1 微閥門探討 10 2.2.2 微致動器探討 11 2.3 微幫浦文獻回顧 17 2.4 相關製程探討 20 2.4.1 微機電技術 20 2.4.2 層加工 22 第三章 相關理論 29 3.1 壓電材料理論 29 3.1.1 壓電效應 30 3.1.2 壓電蜂鳴片選用 31 3.2 無閥式微幫浦基本工作原理 35 3.2.1 擴散器與噴嘴口理論設計 36 第四章 無閥式微幫浦設計與製程 42 4.1 微幫浦結構設計 42 4.1.1 擴散器擴散角設計 44 4.1.2 改變流道方向傾斜角設計 46 4.2 SDM製程 48 4.2.1 切層規劃 49 4.2.2 製程所需之建構材料 52 4.2.3 製程設備 57 4.2.4 設計與製作軟體 61 4.3 無閥式微幫浦製作 63 4.3.1 底層出口流道製作 65 4.3.2 中層入口流道製作 69 4.3.3 頂層外伸結構與腔室製作 74 4.3.4 討論 76 4.3.5 實際加工流程 77 4.4 支撐材料之移除 80 4.5 微幫浦實體尺寸量測 80 第五章 微幫浦封裝與測試 89 5.1 微幫浦封裝 89 5.1.1 壓電蜂鳴片封裝 89 5.1.2 水管與微幫浦封裝 93 5.1.3 量測封裝 95 5.2 壓電驅動系統 100 5.3 量測系統架設 101 5.4 實驗分析方法 105 5.4.1 實驗操作步驟 107 5.5 微幫浦量測結果 108 5.5.1 不同擴散角(2θ)測試探討 109 5.5.2 不同入口流道傾斜角(β)測試探討 114 5.5.3 實驗結果與相關文獻比較 120 5.5.4 微幫浦應用於水下載具推進力評估 123 5.5.5 討論 127 第六章 結論與未來展望 129 6.1 結論 129 6.2 未來研究方向 130 參考文獻 132 附錄1 壓電蜂鳴蜂片規格表 137 附錄2 無閥式微幫浦理論分析 139 附錄3 FC52 Isocyanate/Polyol材料性質表 144 附錄4 BIOACT 280材料性質表 146

    【1】林建宏, "無閥式微幫浦於水下載具應用之研發," 國立台灣科技大學, 碩士學位論文, 2005。
    【2】石禮榮, "3D無閥式微幫浦研發, " 國立台灣科技大學, 碩士學位論文, 2006。
    【3】莊嘉琛, "實用泵的裝置計劃與操作," 高立圖書有限公司, 台北市, 1983。
    【4】M. Koch, N. Harris, "A noval micromachined pump based on thick film piezoelectric actuation," Sensor and Actuators A, Vol.70, pp.98-103, 1998.
    【5】Q. Cui, Chengliang, L. F. Zha, "Design and simulation of a piezoelectrically actuated micropump for the drug delivery system," IEEE, pp45-50, 2006.
    【6】楊愷祥, "無閥式壓電微幫浦", 雲林科技大學工程科技技術研究所,博士論文, 2004。
    【7】R. Zengerle, J. Ulrich, "A bi-directional silicon micropump," Sensor and Actuators A, Vol.50, pp.81-86, 1995.
    【8】J. Jang, S. S. Lee, "Theoretical and experimental study of MHD (magnetohydrodynamic) micropump," Sensor and Actuators A, Vol.80, pp.84-89, 2000.
    【9】C. Yamahata, F. Lacharme, M. A. M. Gijs, "Glass valveless micropump using electromagnetic actuation," Microelectronic Engineering, pp.132-137, 2005.
    【10】S.Li, S.Chen, "Analytical analysis of a circular PZT actuator for valveless micropumps," Sensor and Actuators A, Vol.104, pp.151-161, 2003.
    【11】O. C. Jeong, S. S. Yang, "Fabrication of a thermopneumatic micropump with aluminum flap valves," Journal of the Korean Physical Society, pp.873-877, 2000.
    【12】D.Xu, L.Wang, "Characteristics and fabrication of NiTi/Si diaphragm micropump," Sensor and Actuators A, Vol.93, pp.87-92, 2001.
    【13】E. Makino, T. Mitsuya, T. Shibata, "Micromachining ofTiNi shape memory thin film for fabrication of micropump," Sensors and Actuators, pp.251-259, 2000.
    【14】L. Van, H. T. G. and P. V. De, F. C. M.and Bouwstra, "A piezoelectric micropump based on micromachining of silicon," Sensors and actuators A, pp.153-167, 1988.
    【15】E. Stemme and G. stemme, "A valve-less diffuser/nozzle based fluid pump," Sensors and Actuators, Vol. A39, pp159-167, 1993.
    【16】E. Stemme and G. Stemme, "A novel piezoelectric valve-less fluid pump," The Seventh International Conference on Solid State Sensors and Actuators Yokohama, Japan, pp.110–113, 1993.
    【17】T. Gerlach, H. Wurmus, "Working principle and performance of the dynamic micropump," Sensors and Actuator A, Vol.50, pp.135-140, 1995.
    【18】T. Gerlach, H. Wurmus, "Working principle and performance of the dynamic micropump," IEEE, pp.221-226, 1995.
    【19】A. olsson, G. Stemme and E. Stemme, "A valve-less planar fluid pump with two pump chambers," Sensors and Actuators A, pp46-47, 1995.
    【20】A. Olsson, G. Stemme and E. Stemme, "A valve- less planar fluid pump chambers," Sensors and Actuators, Vol. 46, pp.549-556, 1995.
    【21】A. Olsson, G. Strmme and E. Stemme, "Diffuser-element design investigation for valve-less pumps," Sensor and Actuators A, Vol.57, pp.137-143, 1996.
    【22】A. Olsson, G. Stemme and E. Stmme, "Micromachined flat-walled valveless diffuser pumps," Journal of Microelectro Mechanical Systems, Vol.6, 1997.
    【23】A. Olsson, O. Larsson, J. Holm, L. Lundbladh, O. Ohman, "Valve-less diffuser micropump fabricated using thermoplastic replication," Sensor and Actuator, A64, pp.63-68, 1998.
    【24】R. linnemann, P. Woias, C. Senfft, and J. A. Ditterich, "A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases," IEEE, pp.532-537, 1998.
    【25】S. Bohm, W. Olthuis and P. Bergveld, "A plastic micropump constructed with conventional techniques and materials," Sensors and actuators A, pp.223-228, 1999.
    【26】A. olsson, G. Stemme and E. Stemme, "Numerical and experimental studies offlat-walled diffuser elements for valve-less micropumps, " Sensors and Actuators A, pp.165-175, 2000,.
    【27】J. H. Kim, C.J. Kang, Y. S. Kim, "A disposable polydimethylsiloxane based diffuser micropump actuated by piezoelectric-disc," Microelectronic Engineering, pp.120, 2004.
    【28】黃淳權, "微機電概論," 高立圖書有限公司, 台北市, 2000。
    【29】M. Madou, "Fundamentals of miccrofabrication," CRC, 1997.
    【30】S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, "Processing, defects, and device," Appl. Phys. Rev, Vol. 86, No.1, 1999.
    【31】H. Kodama, "Automatic Method for Fabricating a Three-Dimensional Plastic Model with Photo-Hardening Polymer," Review of Scientific Instruments, Vol.52, 1981.
    【32】Hull, C. W, "Apparatus for production of three-dimensional objects by stereolithography," United States Patent and Trademark Office Websites, 1984.
    【33】CUSTOMPART.NET(http://www.custompartnet.com/wu/stereolithography)
    【34】CUSTOMPART.NET(http://www.custompartnet.com/wu/laminated-object-manufacturing)
    【35】Crump, S. Scott, "Apparatus and method for creating three dimensional objects," United States Patent and Trademark Office Websites, 1989.
    【36】CUSTOMPART.NET(http://www.custompartnet.com/wu/fused-deposition-modeling)
    【37】Gothait, H., "Apparatus and Method for Three Dimensional Model Printing", U.S. Pat. 6259962, 2001.
    【38】Shanghai Huapan Trading Co.,Ltd (www.hua-pan.com/en/anclass.asp?anid=54&types=1)
    【39】Carnegie Mellon's, The Robotics Institute (http://www.cs.cmu.edu/~sdm/)
    【40】R. Merz, F. Prinz, K. Ramaswami, K. Terk, and L. Weiss, "Shape deposition manufacturing," Proceedings of the Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin, Texas, pp.1-8, 1994.
    【41】G. Alexander, "Fabrication of ceramic components using mold shape deposition manufacturing," PhD Thesis, Stanford University, 1999.
    【42】J. Kietzman, "Rapid prototyping polymer parts via shape deposition manufacturing," PhD Thesis, Stanford University, 1999.
    【43】A. M. Dollar and R. D. Howe, "Design and evaluation of a robust compliant grasper using shape deposition manufacturing," Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition, Robotics panel of the Dynamic Systems and Control Division, 2005.
    【44】秋碧秀, "電子陶瓷材料," 徐氏基金會, 1994。
    【45】吳朗, "電子陶瓷—壓電," 全欣科技圖書, 1993。
    【46】A. Olssen, G. Stemme, E. Stemme, "Micromachined diffuser/nozzle elementsfor valve-less pumps," IEEE, 1996.
    【47】F. M. White, "Fluid Mechanics," McGraw-Hill, New York , pp.334-336, 345-351, 1986.
    【48】張瑞東, "具觀測能力的無線遙控微小水下載具之研發," 臺灣科技大學機械工程研究所, 碩士學位論文, pp.72-75, 2007。
    【49】K. Ramaswami, "Process planning for shape deposition manufacturing," PhD Thesis, Stanford University, Palo Alto, California, January 1997.
    【50】"BIOACT 280 Technical Data Sheet, " Petroferm Inc., USA, 2001.
    【51】System 3R, (http://www.system3r.com/), Products→Preision Manufacturing Standard program→Dynafix→Chucks→3R-770-1.
    【52】System 3R, (http://www.system3r.com/), Products→Preision Manufacturing Standard program→Dynafix→Pallets & holder→3R-771-1.
    【53】Ahn, S. H. and Kim, Y. K., "Fabrication and experiment of a planar micro ion drag pump," Sensors and Actuators, 1998.
    【54】Tsai, J. and Lin, L., "A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump," Journal of Microelectromechanical Systems, Vol. 11, pp.665-671, 2002.
    【55】Krassik, W. C. Krutzsch, W. H. Fraser, J. P. Messina, "Pump Handbook," McGraw-Hill, New York, 1976.
    【56】周士凱, "壓電式無閥門微幫浦之參數研究," 國立臺灣大學工學院機械工程學研究所, 碩士學位論文, 2007。

    無法下載圖示 全文公開日期 2014/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE