簡易檢索 / 詳目顯示

研究生: 林三勝
San-Sheng Lin
論文名稱: 新型多相位壓控振盪器之研製
Implementation of Novel Multi-Phase Voltage-Controlled Oscillators
指導教授: 徐世祥
Shih-Hsiang Hsu
張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
莊敏宏
Miin-Horng Juang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 114
中文關鍵詞: 多相位壓控振盪器
外文關鍵詞: Multi-Phase VCO
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在無線通訊系統中,頻率合成器是用來做訊號頻率的升降之用。在頻率合成器電路裡,壓控振盪器與除頻器是重要的核心電路之ㄧ。對壓控振盪器而言,必須提供低相位雜訊的輸出,以避免相鄰雜訊訊號經由混波轉換產生干擾。。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作、寬的操作頻寬及低功率消耗。
本論文提出一個三相位電壓控制振盪器和兩個四相位壓控振盪器。在第一個電路裡,它是個使用三推式耦合的三相位互補式考畢茲壓控振盪器。第二個電路是個使用環型電感技術完成的四相位壓控振盪器。第三個電路中,我們提出一個使用 P型電晶體共閘極耦合技術產生四相位輸出的壓控振盪器。
首先,一個5.3GHz的壓控振盪器使用台積電0.35微米製程實現三相位且在平衡的電路架構中使用三個相同的單端互補式考畢茲壓控振盪器和透過打線的電感效應耦合成三相位輸出。三相位壓控振盪器操作頻率從5.15 GHz 到 5.45 GHz且功率消耗為4.34 mW。而在輸出頻率為5.37 GHz時,1 MHz偏移頻率下相位雜訊為 -119.18 dBc/Hz,晶片面積0.82 × 0.636 mm2 且figure of merit為 -187.5 dBc/Hz。
其次,一個四相位壓控振盪器使用閉迴路環型電感架構且由台積電90 奈米製程技術製作完成。此四相位壓控振盪器頻率操作在7.05 GHz 至 8.15 GHz。而在輸出頻率為8.15 GHz時,1 MHz偏移頻率下相位雜訊為 -119.98 dBc/Hz。此電路之供應電壓為0.85 V時,電流為4.2 mA、消耗功率為3.57mW。
最後,我們提出新的四相位壓控振盪器,將兩組n型交錯耦合電晶體為核心,透過P型電晶體為共閘極放大器和尾端變壓器當作耦合元件實現四相位輸出。此電路的可調頻率為6.47 GHz 至7.71 GHz。而在輸出頻率為7.43 GHz時,1 MHz偏移頻率下相位雜訊為 -116.01 dBc/Hz且消耗功率為2.7mW。此電路的figure of merit為 -189.12 dBc/Hz。


In wireless communication system, frequency synthesizers are used to implement the frequency up/down converting of signal. In a frequency synthesizer, voltage-controlled oscillator (VCO) and divider are the key blocks. For VCOs, low phase-noise output is required to avoid corrupting the mixer-converted signal by close interfering tones. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.
We present a three-phase VCO and two Quadrature VCOs in this thesis. In the first circuit, it’s a three-phase complementary colpitts VCO using the triple-push coupling. The second circuit is a Quadrature VCO using ring inductor technique. In the third circuit, we proposed a VCO which provides quadrature outputs by PMOSFET common-gate -coupling technique.
Firstly, a prototype 5.3 GHz VCO in 0.35 μm CMOS process is proposed to generate 3 output phases and it uses three identical single-ended complementary Colpitts VCOs in a balanced configuration and coupled via the bonding inductors to provide 3-phase outputs. The 3-phase VCO oscillates from 5.15 GHz to 5.45 GHz and the power consumption is 4.34 mW. The phase noise is -119.18 dBc/Hz at 1 MHz offset frequency from 5.37 GHz. The VCO occupies a chip area of 0.82 × 0.636 mm2 and provides a figure of merit of -187.5 dBc/Hz.
Secondly, a QVCO uses a closed-loop ring inductor and is implemented in a standard TSMC 90 nm 1P9M CMOS technology. This QVCO operates between 7.05 GHz and 8.15 GHz. The measured phase noise of the VCO operating at 8.15 GHz is -119.98 dBc/Hz at 1 MHz offset while the QVCO draws 4.2 mA and 3.57 mW consumption from a supply voltage of 0.85 V.
Finally, we presents a new quadrature voltage-controlled oscillator (QVCO), which consists of two n-core cross-coupled voltage-controlled oscillators (VCOs) with pMOSFET common-gate amplifiers and tail transformers as coupling devices. The free-running frequency of the QVCO is tunable from 6.47 GHz to 7.71 GHz . The measured phase noise at 1 MHz frequency offset is -116.01 dBc/Hz at the oscillation frequency of 7.43 GHz and the total power consumption is 2.7 mW, the figure of merit (FOM) of the proposed QVCO is -189.12 dBc/Hz.

中文摘要 I ABSTRACT III 致 謝 V TABLE OF CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Thesis Organization 3 CHAPTER 2 OVERVIEW OF VOLTAGE-CONTROLLED OSCILLATORS 5 2.1 The Oscillator 5 2.1.1 Feedback Oscillators 5 2.1.2 Negative-Resistance Oscillators 8 2.2 All Types of Oscillators 11 2.2.1 Ring Oscillator 11 2.2.2 LC-Tank Oscillator 14 2.3 Voltage-Controlled Oscillators 17 2.3.1 VCO Characteristic Parameters 18 2.3.2 Phase Noise in Oscillator 20 2.3.3 Quadrature VCO Design 27 2.4 Resistors, Inductors and Capacitors in Semiconductor Technologies 34 2.4.1 Resistors 34 2.4.2 Inductors 35 2.4.3 Transformers 42 2.4.4 Capacitors 46 2.4.5 Varactors 49 CHAPTER 3 A 0.35  M CMOS THREE-PHASE COMPLEMENTARY COLPITTS VCO USING THE TRIPLE-PUSH COUPLING 54 3.1 Introduction 54 3.2 Circuit Design 56 3.3 Measurement Results 68 3.4 Conclusion 72 CHAPTER 4 A COMPLEMENTARY CROSS-COUPLED QUADRATURE VCO USING RING INDUCTOR COUPLING METHOD 73 4.1 Introduction 73 4.2 Circuit Design 76 4.3 Measurement Results 78 CHAPTER 5 N-CORE QUADRATURE VCO USING PMOSFET COMMON-GATE AMPLIFIERS AS COUPLING DEVICES 82 5.1 Introduction 82 5.2 Previous Quadrature VCOs 83 5.3 Circuit Design of QVCO 86 5.4. Measurement Results 90 CHAPTER 6 CONCLUSION 93 REFERENCES 95

[1] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
[2] J. van der Tang, and D. Kasperkovitz, “Oscillator design efficiency: a new figure
[3] J. J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569-572, 2000.
[4] T. Lee, and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326-336, Mar. 2000.
[5] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329-330, Feb. 1966.
[6] A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[7] Hajimiri, and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
[8] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press 1998.
[9] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101–109, Jun 1974.
[10] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101–109, Jun 1974.
[11] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661–664, June 1989.
[12] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
[13] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuit, vol. 35, no. 6, pp. 905–910, Jun. 2000.
[14] L. Dai and R. Harjani, "Design of low-phase-noise CMOS ring oscillators, IEEE Trans. Circuits Syst. II, vol. 49, pp. 328-338, 2002.
[15] Razavi , “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, pp. 331–343, Mar. 1996.
[16] J. J. Kim and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure”, in ISSCC digest of technical papers, pp. 430-431, 2000.
[17] Y.-L. Tang and H. Wang, “Triple-push oscillator approach: theory and experiments,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1472–1479, Oct. 2001.
[18] Catlı, and M. M. Hella, “Triple-push operation for combined oscillation/divison functionality in millimeter-wave frequency synthesizers,” IEEE J. Solid-State Circuits, vol. 45, No.8, pp. 1575–1589, 2010
[19] H. Xiao, T. Tanaka, and M. Aikawa, “A Ka-band quadruple-push oscillator,” in IEEE MTT-S Int. Microwave Symp. Dig., Philadelphia, PA, Jun. 2003, pp. 889–892.
[20] J. Choi and A. Mortazawi, “Design of push–push and triple-push oscillators for reducing 1/f noise upconversion,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 11, pp. 3407–3414, Nov. 2005.
[21] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, ” A 0.18 μm CMOS quadrature VCO using the quadruple push-push technique,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.343-345, June, 2010.
[22] S.-H. Li, S.-L. Jang, Y.-S. Chuang and C.-F. Li, “A new LC-tank voltage controlled oscillator,” in IEEE Asia-Pacific Cir. Syst. Conf., Dec. 2004, pp. 425 – 427.
[23] R. G. Freitag, “A unified analysis of MMIC power amplifier stability,” in 1992 IEEE MTT-S Int. Microwave Symp. Dig., Albuquerque, NM, June 1992, pp. 297–300.
[24] R. G. Freitag, S. H. Lee, D. M. Krafcsil, D. E. Dawson, and J. E. Degenford, “Stability and improved circuit modeling considerations for high power MMIC amplifiers,” in 1988 IEEE MTT-S Int. Microwave Symp. Dig., New York, NY, May 1988, pp. 125–128.
[25] S.-L. Jang, C.-Y. Wu, C.-C. Liu, and M.-H. Juang, ” A 5.6 GHz low power balanced VCO in 0.18 μm CMOS,” IEEE Microw. Wireless Compon. Lett., pp. 233-235, April, 2009.
[26] S.-L. Jang, W. Yeh and C.-F. Lee, ” A low power CMOS divide-by-3 LC-tank injection locked frequency divider ,” Microwave and Optical Technology Lett.,Vol. 50, no. 1, pp.259-262, Jan. 2008.)
[27] S.-L. Jang, C.-F. Lee, and W.-H. Yeh, ” A divide-by-3 injection locked frequency divider with single-ended input,” IEEE Microw. Wireless Compon. Lett., pp. 142-144, Feb. 2008.
[28] C.-Y. Cha and S.-G. Lee, “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans.on Microw. Theory and Tech., vol. 53, no. 3, pp. 881-887, Mar. 2005.
[29] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179–194, Feb. 1998.
[30] K. K., N. Park, D.-J. Yang, “1/f noise of NMOS and PMOS transistors and their implications to design of voltage controlled oscillators,” (RFIC) Symposium IEEE, pp. 59 – 62, 2-4 June 2002.
[31] Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896–909, June 2001.
[32] P. Andreani, “A low-phase-noise low-phase-error 1.8 GHz quadrature CMOS VCO,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, San Francisco, CA, Feb. 2002, pp. 290–291.
[33] A. M. ElSayed and M. I. Elmasry, “Low-phase-noise LC quadrature VCO using coupled tank resonators in a ring structure,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 701–705, Apr. 2001.
[34] Peter Kinget, “A Fully Integrated 2.7V 0.35 μm CMOS VCO for 5GHz Wireless Applications,” in Proc. ISSCC, 1998, pp. 226-227.
[35] Y.-B. Choi, T.-H. Teo, and H. Liao, “Symmetrical spiral inductor design and optimization for VCO design in 0.35 μm CMOS technology,” in Proc. IEEE Int. Conf. ASIC, vol. 2, 2003, pp. 1066–1069.
[36] C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz CMOS voltage-controlled oscillator,” in Proc. ISSCC, 1999, pp. 402-403.
[37] T. P. Liu, “A 6.5-GHz monolithic CMOS voltage-controlled oscillator,” in Proc. Int. Solid-State Circuits Conf., 1999, pp. 404-405.
[38] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in Proc. Int. Solid-State Circuits Conf., Feb. 1996, pp. 392–393.
[39] P. Andreani and X.Wang, “On the phase-noise and phase-error performances of multiphase LC CMOS VCOs,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1883–1893, Nov. 2004.
[40] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, Jul. 2003.
[41] J. Tang, P. Ven, D. Kasperkovitz, and A. Roermund, “Analysis and design of an optimally coupled 5-GHz quadrature LC oscillator,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 657-661, May 2002.
[42] S.-L. Jang, C.-Y. Chiu, and C.-F. Lee , ” A complementary Colpitts VCO implemented with ring inductor,” IEEE Int. VLSI- DAT, 2008.
[43] S.-L. Jang, S.-H. Huang, C.-C. Liu and M.-H. Juang, ” CMOS Colpitts quadrature VCO using the body injection-locked coupling technique,” IEEE Microw. Wireless Compon. Lett., pp. 230-232, April, 2009.
[44] Y. J. The, Y. Zheng, W. G. Yeoh, “A 0.18 μm CMOS 8GHz quadrature VCO for UWB application ,” IEEE Int. Conf. on Ultra-Wideband, pp. 631-641, 2007.
[45] Baek, T. Song, E. Yoon, and S. Hong “8-GHz CMOS quadrature VCO using transformer-based LC tank” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446–448, Oct. 2003.
[46] J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
[47] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no.12, pp. 696-698, Dec. 2006.
[48] T.-H. Huang and Y.-R. Tseng, ” A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. Wireless Compon. Lett., pp. 698-700, Oct., 2008.
[49] T. Huang and J. Wang, “New frequency plan and reconfigurable 6.6/7.128 GHz CMOS quadrature VCO for MB-OFDM UWB application,” in Proc. IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2007, pp. 843–846.
[50] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.

無法下載圖示 全文公開日期 2016/07/25 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE