簡易檢索 / 詳目顯示

研究生: Nguyen Duong Tuan Anh
Nguyen Duong Tuan Anh
論文名稱: 製備與表徵具導電性的奈米纖維絲
Preparation and Characterization of Conducting Cellulose Nanofibril Filaments
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 吳昌謀
Chang-Mou Wu
周哲民
Che-Min Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 85
中文關鍵詞: 導電聚合物
外文關鍵詞: Synergistic
相關次數: 點閱:203下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在這項研究中,我們報導了由導電殼包覆的纖維素納米纖絲芯組成的複合材料的製備。使用多元醇沉積和飛秒激光照射方法製備纖維素納米纖絲@氧化鋅(CNF@ZnO)長絲,其中後一種方法獲得的CNF@ZnO長絲與後一種方法相比顯著提高了電導率,主要是由於CNF 燈絲上的ZnO。結果表明ZnO錨定在CNF細絲上並在其上形成導電通道。
在另一項工作中,通過吡咯或苯胺單體在CNF長絲上的原位聚合製備了纖維素納米纖絲@導電聚合物(CNF@CP)長絲。研究了初始單體對電導率的影響。發現單絲的電導率隨著初始單體含量的增加而顯著增加,但在高含量時會降低。
為了更有效地構建CNF長絲的導電性能,在CNF@ZnO長絲表面聚合吡咯或苯胺單體得到CNF@ZnO@CP。結果表明,聚苯胺對CNF@ZnO的導電性有協同作用,而聚吡咯沉積的CNF@ZnO的導電性行為只是兩種導電材料的添加劑。


In this study, we report the preparation of composites consisting of cellulose nanofibril filament core coated by conducting shell. Cellulose nanofibril@zinc oxide (CNF@ZnO) filaments were prepared using polyol deposition and femtosecond laser irradiation methods, in which CNF@ZnO filaments obtained in the latter method significantly improved the electrical conductivity compared to the latter method mainly due to the uniform dispersion of ZnO on CNF filament. The results indicated that ZnO was anchored on the CNF filament and made conductive channel on it.
In another work, cellulose nanofibril@conducting polymer (CNF@CP) filaments were prepared by in situ polymerization of pyrrole or aniline monomer on CNF filament. Effects of initial monomers on electrical conductivity were investigated. The conductivity increased dramatically as monomer content increased, but declined at too high monomer contents.
To construct more effectively the conductive property of CNF filaments, pyrrole or aniline monomer was polymerized on the surface of CNF@ZnO filament to obtain CNF@ZnO@CP. The results revealed that polyaniline synergistically effected on the conductivity of CNF@ZnO, while the behavior of the conductivity of polypyrrole-deposited CNF@ZnO was only additive of both conductive materials.

Abstract i 摘要 ii Acknowledgements iii Contents iv List of Figures vi List of Table ix Chapter 1: Introduction and Motivation 1 1.1 Introduction 1 1.1.1 Cellulose nanofibrils 1 1.1.2 Conducting polymer 4 1.1.3 Metal oxide 10 1.2 Motivation and objective of this work 12 Chapter 2: Experimental section 13 2.1 Material 13 2.2 Experimental process 14 2.2.1 Preparation of cellulose nanofibrils (CNF) 14 2.2.2 Polyol deposition of ZnO on CNF filaments 15 2.2.3 Femtosecond laser deposition of ZnO on CNF filaments 16 2.2.4 Preparation of CNF@PANi core-shell filaments 17 2.2.5 Preparation of CNF@PPy core-shell filaments 18 2.2.6 Synthesis of CNF@ZnO@PANi core-shell filaments 19 2.2.7 Synthesis of CNF@ZnO@PPy core-shell filaments 20 2.3 Instruments 21 Chapter 3: Results and Discussion 22 3.1 Characteristics of CNF@ZnOparticle core-shell filaments 22 3.1.1 Effects of adsorption time 22 3.1.2 Effects of incubation time 26 3.1.3 Formation of ZnO nanoparticles on CNF filament 29 3.2 Characteristics of CNF@ZnO core-shell filaments 31 3.2.1 Effects of adsorption concentration 31 3.2.2 Effects of accumulation time of ZnO after femtosecond laser irradiation 35 3.3 Characteristics of CNF@PANi core-shell filaments 38 3.3.1 Effects of amounts of aniline monomers 38 3.4 Characteristics of CNF@PPy core-shell filaments 43 3.4.1 Effects of amounts of pyrrole monomers 43 3.5 Characteristics of CNF@ZnO@PANi core-shell filaments 49 3.6 Characteristics of CNF@ZnO@PPy core-shell filaments 54 Chapter 4: Conclusions 59 References 60

[1] R.J. Moon, A. Martini, and J. Nairn, Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, 40 (2011) 3941–3994.
[2] Y. Habibi, L.A. Lucia, and O.J. Rojas, Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications, Chemical Reviews, 110 (2010) 3479–3500.
[3] D. Klemm, B. Heublein, H.P. Fink, and A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angewandte Chemie International Edition, 44 (2005) 3358–3393.
[4] D. Klemm, F. Kramer, and S. Moritz, Nanocelluloses: a new family of nature-based materials, Angewandte Chemie International Edition, 50 (2011) 5438–5466.
[5] W. Czaja, A. Krystynowicz, S. Bielecki, and R.M. Brown, Microbial cellulose – the natural power to heal wounds, Biomaterials, 27 (2006) 145–151.
[6] R.J. Moon, A. Martini, J. Nairn, et al., Cellulose nanomaterials review: structure, properties and nanocomposites, Chemical Society Reviews, 40 (2011) 3941–3994.
[7] N. Shah, M. Ul-Islam, W.A. Khattak, and J.K. Park, Overview of bacterial cellulose composites: a multipurpose advanced material, Carbohydrate Polymers, 98 (2013) 1585–1598.
[8] A. Dufresne, Nanocellulose: a new ageless bionanomaterial, Materials Today, 16 (2013) 220–227.
[9] M.W. Ullah, M. Ul-Islam, and S. Khan, Recent advancements in bioreactions of cellular and cell-free systems: a study of bacterial cellulose as a model, Korean Journal of Chemical Engineering, 34 (2017) 1591–1599.
[10] M.W. Ullah, M. Ul-Islam, and S. Khana, Innovative production of bio-cellulose using a cell-free system derived from a single cell line, Carbohydrate Polymers, 132 (2015) 286–294.
[11] A. Jasim, M.W. Ullah, Z. Shi, et al., Fabrication of bacterial cellulose/polyaniline/single-walled carbon nanotubes membrane for potential application as biosensor, Carbohydrate Polymers, 163 (2017) 62–69.
[12] D. Klemm, B. Heublein, H.P. Fink, and A. Bohn, Cellulose: fascinating biopolymer and sustainable raw material, Angewandte Chemie International Edition, 44 (2005) 3358–3393.
[13] N. Lin, and A. Dufresne, Nanocellulose in biomedicine: current status and future prospect, European Polymer Journal, 59 (2014) 302–325.
[14] Z. Shi, X. Gao, M.W. Ullah, et al., Electroconductive natural polymer-based hydrogels, Biomaterials, 111 (2016) 40–54.
[15] M. Ul-Islam, M.W. Ullah, S. Khan, et al., Recent advancement in cellulose based nanocomposite for addressing environmental challenges, Recent Patents on Nanotechnology, 10 (2016) 169–180.
[16] C. Yan, J. Wang, W. Kang, et al., Highly stretchable piezoresistive graphene-nanocellulose nanopaper for strain sensors, Advanced Materials, 26 (2014) 2022–2027.
[17] S. Iwamoto, W. Kai, A. Isogai, and T. Iwata, Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy, Biomacromolecules, 10 (2009) 2571–2576.
[18] A. Sturcova, G.R. Davies, and S.J. Eichhorn, Elastic modulus and stress-transfer properties of tunicate cellulose whiskers, Biomacromolecules, 6 (2005) 1055–1061.
[19] S. Eyley, and W. Thielemans, Surface modification of cellulose nanocrystals, Nanoscale, 6 (2014) 7764–7779.
[20] A. Isogai, T. Saito, H. Fukuzumi, TEMPO-oxidized cellulose nanofibers, Nanoscale, 3 (2011) 71-85.
[21] M. Costa, B. Veigas, J. Jacob, A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: lab-on-paper. Nanotechnology, 25 (2014) 094006.
[22] A.R.F. Moraes, C.C. Pola, A.P. Bilck, Cellulose acetate and polyester biodegradable sheets: Effect of composition and processing conditions, Mat. Sci. Eng., C78 (2017) 932–941.
[23] Z. Karin, K. Minna, T. Tekla and M. Aji P, In situ TEMPO surface funtionalization of nanocellulose membranes for enhanced adsorption of metal ions from aquaous medium, The Royal Society of Chemistry, 2017 5232–5241.
[24] F.L. Huang, Y.F. Xu, B. Peng, et al., Coaxial Electrospun Cellulose-Core Fluoropolymer-Shell Fibrous Membrane from Recycled Cigarette Filter as Separator for High Performance Lithium-Ion Battery, ACS Sustainable Chemistry & Engineering, 3 (2015) 932–940.
[25] A. Chiappone, J.R. Nair, C. Gerbaldi, et al., High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis, Journal of Power Sources, 196 (2011) 10280.
[26] X. Yang, K.Y. Shi, I. Zhitomirsky, and E.D. Cranston, Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials, Advanced Materials, 27 (2015) 6104–6109.
[27] K.Y. Shi, X. Yang, E.D. Cranston, and I. Zhitomirsky, Efficient Lightweight Supercapacitor with Compression Stability, Advanced Functional Materials, 26 (2016) 6437–6445.
[28] G. Nystrom, A. Marais, E. Karabulut, et al., Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries, Nature Communications, 6 (2015) 7259.
[29] M.M. Perez-Madrigal, M.G. Edo, and C. Aleman, Powering the future: application of cellulose-based materials for supercapacitors, Green Chemistry, 18 (2016) 5930–5956.
[30] R. De-Survill, M. Jozefowicz, M. Yu, L.T. Pepichon, J.R. Buvet, Carbon Nanomaterials Embedded in Conductive Polymers: A State of the Art, Electrochim Acta, 13 (1968) 1451–1458.
[31] X. Lu, W. Zhang, C. Wang, T. Wen, Y. Wei, One-dimensional conducting polymer nanocomposites: Synthesis, properties and applications, Prog. Polym. Sci., 36 (2011) 671–712.
[32] M. Wan, Conducting polymers with Micro or Nanometer Structure. Springer, New York, 2008.
[33] X. Chen, J. Devaux, J. Issi, The stability of polypyrrole electrical conductivity, Eur. Polym. J., 30(7) (1994) 809-811.
[34] S.B. Abel, E.I. Yslas, C.R. Rivarola, Synthesis of polyaniline (PANI) and functionalized polyaniline (F-PANI) nanoparticles with controlled size by solvent displacement method. Application in fluorescence detection and bacteria killing by photothermal effect, Nanotechnology, 29 (2018) 125604.
[35] V.G. Kulkarni, L.D. Campbell, W.R. Mathew, Thermal stability of polyaniline, Synthetic Me, 30 (1989) 321-325.
[36] A.F. Baldissera, Development of non-conventional antifouling paint for ships and protection of metallic structures. Doctoral Thesis, Federal University of Rio Grande do Sul, 2008.
[37] G. Inzelt, Conducting polymers: a new era in electrochemistry, Springer Science & Business Media, 2012, Mar 23.
[38] S. HushNoel, Conductive Polymer Composites Based on Carbon Nanomaterials, Ann. N Y Acad. Sci., 1006 (2003) 20.
[39] H. Akamatu, H. Inokuchi, Y. Matsunaga, Electrical conductivity of the perylene–bromine complex, Nature, 173 (1954) 168–169.
[40] H. Shirakawa, E.J. Louis, G. Ala, K. Chwan, V. Heeger, J. Alan, Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x, Chem. Commun., 16 (1977) 578.
[41] J. Huang, Syntheses and applications of conducting polymer polyaniline nanofibers, Pure Appl. Chem., 78 (2006) 15–27.
[42] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline, Prog. Polym. Sci., 34 (2009) 783–810.
[43] S. Li, G. Zhang, G. Jing, J. Kan, Aqueous zinc–polyaniline secondary battery, Synth. Met., 158 (2008) 242–245.
[44] C. Dhand, M. Das, M. Datta, B.D. Malhotra, Recent advances in polyaniline based biosensors, Biosensor Bioelectron, 26 (2011) 2811–2821.
[45] H. Zhong, R. Yuan, Y. Chai, et al., In situ chemo-synthesized multi-wall carbon nanotube-conductive polyaniline nanocomposites: characterization and application for a glucose amperometric biosensor, Talanta, 85 (2011) 104–111.
[46] J. Cao, G. Hu, Z. Peng, et al., Polypyrrole-coated LiCoO2 nanocomposite with enhanced electrochemical properties at high voltage for lithium-ion batteries, J. Power Sources, 281 (2015) 49–55.
[47] W.Y. Wang, P.N. Ting, S.H. Luo, J.Y. Lin, Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells, Electrochim Acta, 137 (2014) 721–727.
[48] P. Herrasti, A.I. Del-Rio, J. Recio, Electrodeposition of homogeneous and adherent polypyrrole on copper for corrosion protection, Electrochim Acta, 52 (2007) 6496–6501.
[49] J.G. Ayenimo, S.B. Adeloju, Inhibitive potentiometric detection of trace metals with ultrathin polypyrrole glucose oxidase biosensor, Talanta, 137 (2015) 62–70.
[50] G. Shi, et al., A novel electrically conductive and biodegradable composite made of polypyrrole nanoparticles and polylactide, Biomaterials, 25 (2004) 2477–2488.
[51] M.B. Runge, et al., The development of electrically conductive polycaprolactone fumarate–polypyrrole composite materials for nerve regeneration, Biomaterials, 31 (2010) 5916–5926.
[52] R.J. Lee, et al., Renewable antioxidant properties of suspensible chitosan–polypyrrole composites, React Funct Polym, 73 (2013) 1072–1077.
[53] N. Gospodinova, L. Terlemezyan, Effect of TiO2 Thin Film Morphology on Polyaniline/TiO2 Solar Cell Efficiency, International Journal of Scientific Advances, 10 (1998) 2708–7972.
[54] Y.Z. Su, W. Dong, J.H. Zhang, J.H. Song, Y.H. Zhang, K.C. Gong, A polyaniline derivative containing disulfide bonds as a cathode material for lithium battery, Polymer, 48 (2007)165–173.
[55] F.D.R. Amado, E. Gondran, M.A.S. Rodrigues, J.Z. Ferreira, C.A. Ferreira, Synthesis and characterisation of high impact polystyrene/polyaniline composite membranes for electrodialysis, J. Membr. Sci., 234 (2004) 139–145.
[56] G. Chen, Z.Y. Wang, D.G. Xia, L. Zhang, R. Hui, J.J. Zhang, Whelk-like Helixes of Polypyrrole Synthesized by Electropolymerization, Adv. Funct. Mater., 17 (2007) 1844–1848.
[57] F.D.R. Amado, L.F. Rodrigues, M.A.S. Rodrigues, A.M. Bernardes, J.Z. Ferreira, C.A. Ferreira, Development of polyurethane/polyaniline membranes for zinc recovery through electrodialysis, Desalination, 186 (2005) 199–206.
[58] F.D.R. Amado, L.F. Rodrigues, M.M.C. Forte, C.A. Ferreira, Properties evaluation of the membranes synthesized with castor oil polyurethane and polyaniline, Polym. Eng. Sci., 46 (2006) 1485.
[59] F. Greco, T. Fujie, L. Ricotti, S. Taccola, B. Mazzolai, V. Mattoli, Two-Photon Polymerization of Sub-micrometric Patterned Surfaces: Investigation of Cell-Substrate Interactions and Improved Differentiation of Neuron-like Cells, ACS Appl. Mater. Interface, 5 (2013) 13012−13021.
[60] F.E. Kanik, E. Rende, S. Timur, L. Topparem, A novel functional conducting polymer: synthesis and application to biomolecule immobilization, J. Mater. Chem., 22 (2012) 22517−22525.
[61] C.A. Ferreira, S. Aeiyach, J.J. Aaron, P.C Lacaze, Electrosynthesis of strongly adherent polypyrrole coatings on iron and mild steel in aqueous media, Electrochim Acta, 41 (1996) 1801−1809.
[62] A. Meneguzzi, C.A. Ferreira, M.C. Pham, M. Delamar, P.C. Lacaze, Electrochemical synthesis and characterization of poly (5-amino-1-naphthol) on mild steel electrodes for corrosion protection, Electrochim Acta, 44 (1999) 2149−2156.
[63] A.F. Baldissera, D.B. Freitas, C.A. Ferreira, Electrochemical impedance spectroscopy investigation of chlorinated rubber‐based coatings containing polyaniline as anticorrosion agent, Mater. Corros., 61 (2010) 790.
[64] G.S. Gonçalves, A.F. Baldissera, L.F. Rodrigues, E.M.A. Martini, C.A. Ferreira, Alkyd coatings containing polyanilines for corrosion protection of mild steel, Synth. Met., 161 (2011) 313−323.
[65] A.F. Baldissera, C.A. Ferreira, Coatings based on electronic conducting polymers for corrosion protection of metals, Prog. Org. Coat., 75 (2012) 241−247.
[66] T.K. Mahto, A.R. Chowdhuri, S.K. Sahu, Polyaniline-functionalized magnetic nanoparticles for the removal of toxic dye from wastewater, J. Appl. Polym. Sci., 131 (2014) 40840.
[67] L. Kong, X. Lu, E. Jin, et al., Constructing magnetic polyaniline metal hybrid nanostructures using, J. Solid State Chem., 182 (2009) 2081–2087.
[68] Z. Xu, M. Gao, L. Yu, et al., Co nanoparticles induced resistive switching and magnetism for the electrochemically deposited polypyrrole composite films, ACS Appl. Mater. Interfaces, 6 (2014) 17823–17830.
[69] K.G.B. Alves, C.A.S. Andrade, S.L. Campello, et al., Magnetite/polypyrrole hybrid nanocomposites as a promising magnetic resonance imaging contrast material, J. Appl. Polym. Sci., 128 (2013) 3170–3176.
[70] S.C. Wuang, K.G. Neoh, E.T. Kang, et al., Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine, J .Mater. Chem., 17 (2007) 3354–3362.
[71] X. Song, H. Gong, S. Yin, et al., Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided Photothermal therapy, Adv. Funct. Mater., 24 (2014) 1194–1201.
[72] S. Vijayakumar, Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: characterization and biomedical applications, Biomed. Pharmacotherapy, 84 (2016) 1213–1222.
[73] Y. Yulizar, et al, ZnO/CuO nanocomposite prepared in one-pot green synthesis using seed bark extract of Theobroma cacao, Nano-Struct. Nano-Obj., 16 (2018) 300–305.
[74] M. Madhukara-Naik, et al., Green synthesis of zinc doped cobalt ferrite nanoparticles: structural, optical, photocatalytic and antibacterial studies, Nano-Struct. Nano-Obj., 19 (2019) 100322.
[75] S.P. Jacob, et at., Aspergillus niger mediated synthesis of ZnO Nanoparticles and their antimicrobial and in vitro anticancerous activity, World J. Pharmaceut. Res., 3 (2014) 3044–3054.
[76] M.H. Huang, et al., ZnO nanorods: synthesis, characterization and applications, Science, 292 (2001) 1897.
[77] Z.L. Wang, and J.H. Song, Near UV LEDs Made with in Situ Doped p-n Homojunction ZnO Nanowire Arrays, Science, 10 (2010) 4387–4393.
[78] Z.W. Pan, Z.R. Dai, and Z.L. Wang, Nanobelts of semiconducting oxide,. Science, 291 (2001) 1947.
[79] A.D. Pasquier, H.H. Chen, and Y.C. Lu, Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays, Appl. Phys. Lett., 89(2006) 253513.
[80] Q. Wan, Q.H. Li, Y.J. Chen, et al., Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett., 84 (2004) 3654.
[81] X.S. Fang, C.H. Ye, L.D. Zhang, Y. Li, and Z.D. Xiao, Formation and optical properties of thin and wide tin-doped ZnO nanobelts, Chem. Lett., 34 (2005) 436–437.
[82] M.L. Curri, R. Comparelli, P.D. Cozzoli, G. Mascolo, and A. Agostiano, Colloidal oxide nanoparticles for the photocatalytic degradation of organic dye, Mater. Sci. Eng. C., 23 (2003) 285–289.
[83] R. Comparelli, P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Mascolo, and G. Lovecchio, Photocatalytic degradation of methyl-red by immobilised nanoparticles of TiO2 and ZnO, Water. Sci. Technol., 49 (2004) 183.
[84] R. Comparelli, E. Fanizza, M.L. Curri, P.D. Cozzoli, G. Mascolo, and A. Agostiano, UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates, Appl. Catal. B, 60 (2005) 1–11.
[85] G. Appierot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken, Paper modified with ZnO nanorods–antimicrobial studies, Adv. Funct. Mater., 19 (2009) 684–691.
[86] J.H. Lee, K.H. Ko, and B.O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol–gel method, J. Cryst. Growth., 247 (2003) 119–125.
[87] J.E. Rodriguez-Paez, A.C. Caballero, M. Villegas, C. Moure, P. Duran, and J.F. Fernan-dez, Controlled precipitation methods: formation mechanism of ZnO nanoparticles, J. Eur. Ceram. Soc., 21 (2001) 925–930.
[88] P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Leo, and M. Lomascolo, ZnO nanocrystals by a non-hydrolytic route: synthesis and characterization, J. Phys. Chem. B., 107 (2003) 4756–4762.
[89] K. Sue, K. Kimura, and K. Arai, Hydrothermal synthesis of ZnO nanocrystals using microreactor, Mater. Lett., 58 (2004) 3229–3231.
[90] S.A. Studenikin, N. Golego, and M. Cocivera, Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis, J. Appl. Phys., 84 (1998) 2287.
[91] Y. Yang, et al., Femtosecond laser deposited zinc oxide film and its optical properties, Vacuum, 83 (2009) 892–896.
[92] B.Z. Dong, G.J. Fang, J.F. Wang, W.J. Guan, X.Z. Zhao, Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition, J. Appl. Phys., 101 (2007) 033713.
[93] F.K. Shan, G.X. Liu, W.J. Lee, B.C. Shin, The role of oxygen vacancies in epitaxial-deposited ZnO thin films, J. Appl. Phys., 101 (2007) 053106.
[94] Z.K. Tang, P. Yu, G.L. Wang, M. Kawasaki, A. Ohtomo, H. Koinuma, et al., Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature, Solid State Commun., 103 (1997) 459–463.
[95] M.Y. Li, W. Anderson, N. Chokshi, R.L. DeLeon, G. Tompa, Laser annealing of laser assisted molecular beam deposited ZnO thin films with application to metal-semiconductor-metal photodetectors, J. Appl. Phys., 100 (2006) 053106.
[96] L. Wang, M. Ago, M. Borghei, A. Ishaq, Papageorgiou, M. Lundahl, O. J. Rojas. Conductive Carbon Microfibers Derived from Wet-Spun Lignin/ Nanocellulose Hydrogels, ACS Sustainable Chem. Eng., 7 (2019) 6013-6022.
[97] T.A. Geleta, T. Imae (2020), Influence of Additives on Zinc Oxide-Based Dye Sensitized Solar Cells, Bull. Chem. Soc. Jpn., 93 (2019) 611–620.
[98] P. Maity, M. Khandelwa, Synthesis time and temperature effect on polyaniline morphology and conductivity, American Journal, Hyderabad, (2016) 37-42.
[99] R. Singh, R. Tandon, V. Panwa, Low temperature relaxation in polypyrrole, J. Chem. Phys., 95 (1991) 722–723.
[100] J. Fu, Z. Pang, J. Yang, F. Huang, Y. Cai, Q.Wei, Fabrication of polyaniline/carboxymethyl cellulose/cellulose nanofibrous mats and their biosensing application, Applied Surface Science, 349 (2015) 35–42.
[101] G.A. Ruiz, C.J. Felice, Electrochemical-Fractal Model Versus Randles Model: A Discussion About Diffusion Process, Int. J. Electrochem. Sci., 10 (2015) 8484–8496.
[102] U.M. Casado, M.I. Aranguren, N.E. Marcovich, Preparation and characterization of conductive nanostructured particlesbased on polyaniline and cellulose nanofibers, Ultrasonics Sonochemistry, 21 (2014) 1641–1648.
[103] S. Pirsa, T. Shamusi, E. M. Kia, Smart films based on bacterial cellulose nanofibers modified by conductive polypyrrole and zinc oxide nanoparticles, J .Appl. Polym. Sci., 10 (2018) 46617.
[104] Z. Cai, J. Kim, Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility, Cellulose, 17 (2010) 83–91.
[105] D. Müller, C.R. Rambo, D.O.S. Recouvreux, L.M. Porto, G.M.O. Barra, Chemicalin situpolymerization of polypyrrole on bacterial cellulose nanofibers, Synthetic Metals, 161 (2011) 106–111.
[106] W. T. Wulandari, A. Rochliadi and I.M. Arcana, Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse, IOP Conf. Series: Materials Science and Engineering, 107 (2016) 012045.
[107] A. Mandal, D. Chakrabarty, Isolation of nanocellulose from waste sugarcane bagasse (SCB) and itscharacterization, Carbohydrate Polymers, 86 (2011) 1291–1299.
[108] H.S. Hassan, M.F. Elkady, A.A. Farghali, A.M. Salem, A.I.A Hamid, Fabrication of novel magnetic zinc oxide cellulose acetate hybrid nano-fiber to be utilized for phenol decontamination, Journal of the Taiwan Institute of Chemical Engineers, 78 (2017) 307–316.
[109] A.P. Palomino, R. Singhal, O.P. Perez, S.D. Devia, M.D. Tomar, Low-temperature chemical solution synthesis and characterization of nanocrystalline Fe-doped ZnO, Nanotech, 4 (2007) 297–300 .
[110] R. Li, J. Dou, Q. Jiang, J. Li, Z. Xie, J. Liang, et al., Preparation and antimicrobial activity of β-cyclodextrin derivative copolymers/cellulose acetate nanofibers, Chem Eng J., 248 (2014) 264–72.
[111] M.F. Elkady, H.H. Shokry, Invention of hollow zirconium tungesto-vanadate at nanotube morphological structure for radionuclides and heavy metal pollu- tants decontamination from aqueous solution, Nanoscale Res. Lett., 10 (2015) 1–6.
[112] S. Chen, W. Shen, F. Yu, W. Hu, and H. Wang, Preparation of amidoximated bacterial cellulose and its adsorption mechanism for Cu2+and Pb2+, Journal of Applied Polymer Science, 117 (2010) 8–15.
[113] W. Hu, S. Chen, and H. Wang, Template synthesis based on bacterial cellulose, Journal of Clinical Rehabilitative Tissue Engineering Research, 13 (2009) 1597–1600.
[114] W. Hu, S. Chen, X. Li, S. Shi, W. Shen, X. Zhang, et al., In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes, Materials Science and Engineering C, 29 (2009) 1216–1219.
[115] S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, and H. Yano, Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers, Biomacromolecules, 10 (2009) 2714–2717.
[116] S. Lee, S. Jeong, D. Kim, S. Hwang, M. Jeon, and J. Moon, ZnO nanoparticles with controlled shapes and sizes prepared using a simple polyol synthesis, Superlattices and Microstructures, 43 (2008) 330–339.
[117] C. Kolodziejc, C. Burdac, A. Franco-Jr, Effect of particle shape and size on the morphology and optical properties of zinc oxide synthesized by the polyol method, Materials and Design, 146 (2018) 125–133.
[118] Z. Xiang, W. Gao, L. Chen, W. Lan, J.Y. Zhu, T. Runge, A comparison of cellulosenanofibrils produced fromCladophora glomerataalgae and bleached eucalyptuspulp, Cellulose, 23 (2016) 493–503.
[119] M. Fan, D. Dai, B. Huang, Fourier transform infrared spectroscopy for naturalfibres, Fourier Transform-materials Analysis, InTech, 2012.
[120] Y.W. Chen, H.V. Lee, J.C. Juan, S.M. Phang, Production of new cellulose nanomaterialfrom red algae marine biomassGelidium elegans, Carbohydr. Polym., 151 (2016) 1210–1219.
[121] P.L. Bhutiya, M.S. Mahajan, M.A. Rasheed, M. Pandey, S.Z. Hasan, N. Misra, Zinc oxide nanorod clusters deposited seaweed cellulose sheet forantimicrobial activity, International Journal of Biological Macromolecules, 112 (2018) 1264–1271.
[122] A. Bedia, F.Z. Bedia, M. Aillerie, N. Maloufi, B. Benyoucef, Morphological and opticalproperties of ZnO thinfilms prepared by spray pyrolysis on glass substrates at var-ious temperatures for integration in solar cell, Energy Procedia, 74 (2015) 529–538.
[123] S. Shankar, A.A. Oun, J.W. Rhim, Preparation of antimicrobial hybrid nano-materialsusing regenerated cellulose and metallic nanoparticles, Int. J. Biol. Macromol., 107 (2018) 17–27.
[124] X. Zhang, J. Zhu, N. Haldolaarachchige, J. Ryu, D.P. Young, S. Wei, et al., Synthetic process engineered polyaniline nanostructures with tunablemorphology and physical properties, Polymer, 53 (2012) 2109–2120.
[125] J. Huang, R.B. Kaner, The intrinsic nanofibrillar morphology of polyaniline, Chem. Commun., (2006) 367–376.
[126] S. Banerjee, A. Kumar, Dielectric behavior and charge transport in polyanilinenanofiber reinforced PMMA composites, J. Phys. Chem. Solids, 71 (2010) 381–388.
[127] D.Y. Liua, G.X. Suia, D. Bhattacharyyaba, Synthesis and characterisation of nanocellulose-based polyanilineconducting films, Composites Science and Technolog, 99 (2014) 31-36.
[128] D.A. Gopakumar, et al., Meldrum’s Acid Modified Cellulose Nanofiber-Based Polyvinylidene Fluoride Microfiltration Membrane for Dye Water Treatment and Nanoparticle Removal, ACS Sustainable Chem. Eng., 5 (2017) 2026−2033.
[129] D.A. Gopakumar, et al., Flexible papers derived from polypyrrole deposited cellulose nanofibers for enhanced electromagnetic interference shielding in gigahertz frequencies, J Appl Polym Sci, 138 (2021)
[130] Y. Wan, et al., Simultaneously depositing polyaniline onto bacterial cellulose nanofibersand graphene nanosheets toward electrically conductive nanocomposites, Current Applied Physics, 05 (2018) 933−940.
[131] M. Khan, et al., Sulphonated polyaniline/MWCNTs nanocomposite: preparation and promising thermoelectric performance, International Nano Letters, 8 (2018) 213–220.
[132] F. G. Souza, et al., Effect of Preparation Method on Nanoscopic Structure of Conductive SBS/PANI Blends: Study Using Small-Angle X-ray Scattering, Journal of Polymer Science: Part B: Polymer Physics, 45 (2007) 3069–3077.
[133] J. Li, et al., Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPycomposite for electrochemical capacitor, Applied Surface Science, 256 (2010) 4339–4343.
[134] U. O. Aigbe, et al., A novel method for removal of Cr(VI) using polypyrrole magnetic nanocomposite in the presence of unsteady magnetic fields, Separation and Purification Technology, 194 (2018) 377–387.
[135] S.J.T. Rezaei, Y. Bide, M.R. Nabid, A new approach for the synthesis of polyaniline microstructures with a unique tetragonal star-like morphology, Synth. Met., 161 (2011) 1414–1419.
[136] E. Marie, R. Rothe, M. Antonietti, K. Landfester, Synthesis of polyaniline particles via inverse and direct miniemulsion, Macromolecules, 36 (2003) 3967–3973.
[137] H. Yu, C. Wang, J. Zhang, H. Li, S. Liu, Y. Ran, et al., Cyclodextrin-assisted synthesis of water-dispersible polyaniline nanofibers by controlling secondary growth, Mater. Chem. Phys., 133 (2012) 459–464.
[138] C. Xia, W. Chen, X. Wang, M.N. Hedhili, N. Wei, H.N. Alshareef, Highly stable supercapacitors with conducting polymer core-shell electrodes for energy storage applications, Adv. Energy Mater, 5 (2015) 1401805.
[139] H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, Flexible graphene-polyaniline composite paper for high-performance supercapacitor, Energy Environ. Sci., 6 (2013) 1185–1191.
[140] X. Wu, C. Lu, H. Xu, X. Zhang, Z. Zhou, Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity, ACS Appl. Mater. Interfaces, (2014) 21078–21085.
[141] J. Xu, K. Wang, S.-Z. Zu, B.-H. Han, Z. Wei, Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage, ACS Nano, 4 (2010) 5019–5026.
[142] W. Hu, S. Chen, Z. Yang, L. Liu, H. Wang, Flexible electrically conductive nanocomposite membrane based on bacterial cellulose andpolyaniline, J. Phys. Chem. B, 115 (2011) 8453–8457.
[143] C. Yang, D. Li, Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline, Mater. Lett., 155 (2015) 78–81.
[144] W. Zheng, M. Angelopoulos, A.J. Epstein, A.G. MacDiarmid, Concentration dependence of aggregation of polyaniline in NMP solution and properties of resulting cast films, Macromolecules, 30 (1997) 7634–7637.
[145] R. Kötz, M. Carlen, Principles and applications of electrochemical capacitors, Electrochim Acta, 45 (2000) 2483–2498.
[146] C.C. Wan, Y. Jiao, J. Li, Flexible, highly conductive, and freestanding reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes, J. Mater. Chem. A, 5 (2017) 3819–3831
[147] L.Y. Yuan, B. Yao, et al., Polypyrrole-coated paper for flexible solid-state energy storage, Energy Environ. Sci., 6 (2013) 470–476.
[148] M. Omastová, M. Trchová, et al., Effect of polymerization conditions on the properties of polypyrrole prepared in the presence of sodium bis(2-ethylhexyl) sulfosuccinate, Synth. Met., 143 (2004) 153–161.
[149] B.H. Patil, R.N. Bulakhe, C.D. Lokhande, Supercapacitive performance of chemically synthesized polypyrrole thin films: effect of monomer to oxidant ratio, J Mater Sci-Mater In Electron, 25 (2014) 2188–2198.

無法下載圖示 全文公開日期 2031/08/06 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE