簡易檢索 / 詳目顯示

研究生: 姜智淵
Chih-Yuan Chiang
論文名稱: 有機薄膜電晶體的特性改善與可靠度的研究
Performance Improvement and Reliability Investigation of Organic Thin Film Transistor
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 王錫九
none
李志堅
none
李奎毅
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 82
中文關鍵詞: 有機薄膜
外文關鍵詞: Organic Thin Film
相關次數: 點閱:226下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,有機顯示器成為市場上的前瞻技術,利用有機發光二極體和有機薄膜電晶體已經可以製作出低成本、可彎曲、全彩的平面顯示器。本論文以“bottom contact"的結構, SiO2 為絕緣層,利用蒸鍍的方式成長有機薄膜,成功地製作出以Pentacene 為有機材料的有機薄膜電晶體。
在第三章當中,我們先研究元件通道尺寸大小對有機薄膜電晶體電特性的影響。我們製作不同尺寸的元件作比較,發現當元件通道長度愈長、通道寬度愈短,其載子移動率較高。我們再利用鉑、鈀、鎳來當作有機薄膜電晶體之源極和汲極的電極材料,發現用鉑當電極材料得到的特性較好,這是由於功函數較大的材料比較能夠和 Pentacene 形成較佳的歐姆接觸。
在第四章,我們把有機薄膜電晶體放在大氣環境下,觀察元件劣化的情況。我們發現元件臨界電壓會偏移 (Threshold Voltage shift) 、漏電流 (leakage current) 會增加、導通電流 (On Current) 會下降,這是由於大氣中的水氣會造成有機薄膜電晶體特性的衰減。


Recently active matrix organic light-emitting diodes (AMOLEDs) become the most advanced technique on the FPD market. Using organic light-emitting diodes (OLEDs) and organic thin film transistors (OTFTs) can produce low-cost, flexible, full color. Flat panel- display in the dissertation, we use the “bottom contact” as the gate structure and SiO2 as gate insulator layer. Using the above structure, we have successfully fabricated Organic thin-film-transistor with Pentacene as the active layer.
In chapter 3, we have first studied the effect of channel dimension on the device characteristics. For various channel dimensions. The longer the channel length and the narrower the channel width, the larger the mobility. Secondly, we have investigated the effect of different source/drain metal on device performance. The metals of S/D electrode are (Platinum, Pt), (Palladium, Pd), (Nickel, Ni). It is found that among these metals, the (Platinum, Pt) as S/D electrode can result in the best performance due to the highest work function and the best ohmic contact between S/D metal and Pentacene.
In chapter 4, we stress organic thin film transistor in the atmosphere to observe the change of the device characteristics. We find that the increasing threshold voltage, decreasing on current and increasing leakage current with the stress duration. This is because that the humidity of atmosphere causes the performance degradation of the organic thin film transistor as a result of H2O molecule diffusing into the grain boundary of Pentacene.

中文摘要 ------------------------------------------------------------------ Ⅰ 英文摘要 ------------------------------------------------------------------ Ⅱ 目錄 ---------------------------------------------------------------------- Ⅳ 圖目錄 -------------------------------------------------------------------- Ⅵ 表目錄 -------------------------------------------------------------------- Ⅸ Chapter 1 導 論 ----------------------------------------------------------- 1 1.1 有機半導體概論 -------------------------------------------------------- 1 1.2 研究動機與背景 -------------------------------------------------------- 1 Chapter 2 有機薄膜電晶體概述 ---------------------------------------------- 5 2.1 OTFT有機半導體簡述 ---------------------------------------------------- 5 2.1.1 有機半導體材料概述 -------------------------------------------------- 5 2.1.2 有機薄膜電晶體的結構 ------------------------------------------------ 6 2.1.3 有機薄膜電晶體之製程開發 -------------------------------------------- 6 2.1.4 OTFT的操作模式 ----------------------------------------------------- 7 2.2 參數的粹取 (Parameters Extract) --------------------------------------- 9 2.2.1 臨界電壓 (Threshold Voltage) ---------------------------------------- 9 2.2.2 載子移動率 (Mobility) ----------------------------------------------- 9 2.2.3 次臨界斜率 (Subthreshold Swing) ------------------------------------- 10 2.2.4 開關電流比 (On/Off current ratio) ----------------------------------- 11 2.3 元件製作程序 (Fabrication procedure) ---------------------------------- 12 2.3.1 閘極 (Gate) --------------------------------------------------------- 12 2.3.2 閘極絕緣層 (Gate insulator layer) ----------------------------------- 12 2.3.3 源極/汲極 (Source/Drain) -------------------------------------------- 12 2.3.4 主動層 (Active layer) ----------------------------------------------- 14 2.3.5 量測機台 ------------------------------------------------------------ 14 Chapter 3 電極材料對 OTFT 元件特性的影響 ---------------------------------- 31 3.1 簡介 ------------------------------------------------------------------ 31 3.2 源極/汲極金屬材料的影響 ----------------------------------------------- 31 3.2.1 實驗參數 ----------------------------------------------------------- 31 3.2.2 元件製作 ----------------------------------------------------------- 31 3.2.3 元件量測 ----------------------------------------------------------- 32 3.2.4 結果與討論 --------------------------------------------------------- 32 3.2.5 Pentacene 沈積於不同的金屬情形 ------------------------------------- 33 3.3 元件尺寸對元件特性的影響 ---------------------------------------------- 34 3.3.1 實驗參數 ----------------------------------------------------------- 34 3.3.2 元件製作 ----------------------------------------------------------- 34 3.3.3 元件量測 ----------------------------------------------------------- 34 3.3.4 結果與討論 --------------------------------------------------------- 35 3.4 結論 ------------------------------------------------------------------ 36 Chapter 4 OTFT可靠度之研究 ----------------------------------------------- 55 4.1 簡介 ------------------------------------------------------------------ 55 4.2 有機元件在大氣環境下劣化之研究 ---------------------------------------- 55 4.2.1 實驗參數 ------------------------------------------------------------ 55 4.2.2 元件製作 ------------------------------------------------------------ 56 4.2.3元件量測 ------------------------------------------------------------- 56 4.2.4 結果與討論 ---------------------------------------------------------- 56 4.3 有機元件施加源極電壓劣化之研究 ---------------------------------------- 58 4.3.1 實驗參數 ------------------------------------------------------------ 58 4.3.2 元件製作 ------------------------------------------------------------ 58 4.3.3元件量測 ------------------------------------------------------------- 58 4.3.4 結果與討論 ---------------------------------------------------------- 59 4.4 結論 ------------------------------------------------------------------ 60 Chapter 5 結論與未來發展 -------------------------------------------------- 77 5.1 結論 ------------------------------------------------------------------ 77 5.2 未來發展 -------------------------------------------------------------- 77 參考文獻 ------------------------------------------------------------------ 78

[1] Yong Qiu, Yuanchuan Hu, Guifang Dong, Liduo Wang, Junfeng Xie, and Yaning Ma” H2O effect on the stability of organic thin-film field-effect transistors”, Appl. Phys. Lett. Vol.83, No.8, pp.1644-1647 (2003).
[2] Ch. Pannemann, T. Diekmann, and U. Hilleringmann, “Degradation of organic field-effect transistors made of Pentacene”, J. Mater. Res. Vol.19, pp.1999(2004).
[3] Paul V. Pesavento, Kanan P. Puntambekar, C. Daniel Frisbie, John C. McKeen, and P. Paul Ruden “Film and contact resistance in pentacene thin-film transistors: Dependence on film thickness, electrode geometry, and correlation with hole mobility “, J. Appl. Phys. Vol.99, No.1, pp.094504(2006).
[4] C. R. Kagan, A. Afzali, and T. O. Graham “Operational and environmental stability of pentacene thin-film transistors”, Appl. Phys. Lett. Vol.86, pp.193505(2005).
[5] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp “Molecular beam deposited thin films of pentacene for organic field effect transistor applications”, J. Appl. Phys. Vol.80, pp.2501(1996).
[6] A. R. Brown, A. Pomp, D. M. de Leeuw, D. B. M. Klassen, E. E. Havinga, P. T. Herwig, and K. Müllen, “Precursor route pentacene metal-insulator-semiconductor field-effect transistors”, J. Appl. Phys. Vol.79, pp.2136(1996).
[7] Z.-T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, ” Bulk and surface magnetic study of Fe80B20 crystallization”, Appl. Phys. Lett. Vol.81, pp.4643 (2002).
[8] S. F. Nelson, Y. Y. Lin, D. J. Gundlach and T. N. Jackson, ”Temperature-independent transport in high-mobility Pentacene transistors,” Appl. Phys. Lett., Vol. 72, pp. 1854-1856, 1998.
[9] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, “Field-effect transistors made from solution-processed organic semiconductors,” Synthetic Metals, Vol. 88, pp. 37-55, (1997).
[10] K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, and J. Kasahara, “A high-performance short-channel bottom-contact OTFT and its application to AM-TN-LCD”, IEEE Trans. Electron Devices Vol.52, pp.1519 (2005).
[11] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, "Organic Vapor Phase Deposition", Adv. Mater. Vol.10, No.18, pp.234-238(1998).
[12] Christos D. Dimitrakopoulos* and Patrick R. L. Malenfant, “Organic Thin Film Transistors for Large Area Electronics”, Adv. Mater. Vol.14, No.2(2002).
[13] H. Sirringhaus, P. J. Brown, R. H. Friend et al., Nature (London) Vol.401, pp.685(1999).
[14] Brown, A.R.; De Leeuw, D.M.; Matters, M.; Jarrett, C.P. “Field-effect transistors made from solution-processed organic semiconductors”, Synthetic Metals Vol.88 pp.37-55(1997).
[15] T. Mizuki, J.S. Matsuda, Y. Nakamura, J. Takagi and T. Yoshida, “Large domains of continuous grain silicon on glass substrate for high-performance TFTs”, IEEE Trans. Electron Devices, Vol.51, pp.204(2004).
[16] Sung Hwan Kim, Hye Young Choi, and Jin Jang , “Effect of source/drain undercut on the performance of pentacene thin-film transistors on plastic”, Appl. Phys. Lett., Vol. 85, No.19, pp.4514-4517(2004).
[17] Katsuhiko Fujita, Takeshi Yasuda, and Tetsuo Tsutsui , ” Flexible organic field-effect transistors fabricated by the electrode-peeling transfer with an assist of self-assembled monolayer”, Appl. Phys. Lett., Vol.82, No.24, pp.4373-4375(2003).
[18] Seong Jun Kang, Myungkeun Noh, Dae Sik Park, Hui Jung Kim, Sang Yeo Kim, Bon Won Koo, In Nam Kang and Chung Nam Whang, ” Geometric Effect of Channel on Device Performance in Pentacene Thin-Film Transistor”, Japanese Journal of Applied Physics , Vol.43, No.11, pp.7718–7721(2004).
[19] Hsiao-Wen Zan, Ting-Chang Chang, Po-Sheng Shih, Du-Zen Peng, Tiao-Yuan Huang and Chun-Yen Chang, ”Analysis of Narrow Width Effects in Polycrystalline Silicon Thin Film Transistors”, Jpn. J. Appl. Phys. Vol.42, No.1, pp.28–32(2003).
[20] R. Parashkov, E. Becker, S. Hartmann, G. Ginev, D. Schneider, H. Krautwald,T. Dobbertin, D. Metzdorf, F. Brunetti, C. Schildknecht, A. Kammoun, M. Brandes,
T. Riedl, H. Johannes, and W. Kowalsky , “Vertical channel all-organic thin-film transistors”, Appl. Phys. Lett., Vol.82 , No.25 ,pp.4579-4581(2003).
[21] Jiyoul Lee, Kibum Kim, Jae Hoon Kim, and Seongil Im , “Optimum channel thickness in pentacene-based thin-film transistors”, Appl. Phys. Lett., Vol.82, No.23, pp.4169-4171(2004).
[22] Sung Hun Jin ∗, Keum Dong Jung, Hyungcheol Shin, Byung-Gook Park, Jong Duk Lee” Grain size effects on contact resistance of top-contact pentacene TFTs”, Synthetic Metals, Vol.156, pp.196–201(2006).
[23] Jana Zaumseil, Takao Someya, Zhenan Bao, Yueh-Lin Loo, Raymond Cirelli, and John A. Rogers, “Nanoscale organic transistors that use sourceÕdrain electrodes supported by high resolution rubber stamps”, Appl. Phys. Lett., Vol.82, No.5, pp.793-795(2004).
[24] Jana Zaumseil, Kirk W. Baldwin, and John A. Rogers, ”Contact resistance in organic transistors that use source and drain electrodes formed by soft contact lamination", J. Appl. Phys., Vol.93, No.10, pp.6117-6124(2003).
[25] Mohamed S. A. Abdou, Francesco P. Orfino, Yongkeun Son, and Steven Holdcroft,
“Interaction of Oxygen with Conjugated Polymers: Charge Transfer Complex Formation with Poly(3-alkylthiophenes) ”; J. Am. Chem. Soc., Vol.119, No.2, pp.4518-4524(1997).
[26] A. Ullmann, W. Fix, H. Rost, and W. Clemens, “Stability of polythiophene –based transistors and circuits”, J. Appl. Phys. Vol.94, No.4, pp.3241-3245(2003).
[27] C. R. Kagan, A. Afzali, and T. O. Graham, “Operational and environmental stability of pentacene thin-film transistors”, Appl. Phys. Lett., Vol.86, pp.193505-193508 (2005).
[28] C. Goldmann, D. J. Gundlach, and B. Batlogg, ” Evidence of water-related discrete trap state formation in Pentacene single-crystal field-effect transistors, “Appl. Phys. Lett. Vol. 88, No.1, pp.063501-063504 (2006).
[29] Z.-T. Zhu, J. T. Mason, R. Dieckmann, and G. G. Malliaras, Appl. Phys. Lett., Vol.81, pp.4643-4646 (2002).
[30] Y. W. Wang, J. L. Cheng, Y. K. Wang, T. H. Hu, J. C. Ho, C. C. Lee, T. F. Lei, and C. F. Yeh,” Humidity sensors based on Pentacene thin-film transistors”, Thin Solid Films vol.467, pp.215-218(2004).
[31] Ch. Pannemann, T. Diekmann, and U. Hilleringmann, J. Mater. Res. Vol.19, pp.1999-2001 (2004).
[32] T. Komoda, K. Kita, K. Kyuno, and A. Toriumi, Jpn. J. Appl. Phys., Part1 vol42, pp.3662-3665 (2003).
[33] Zheng-Tao Zhu, Jeffrey T. Mason, Ru¨ diger Dieckmann, and George G. Malliarasa)
“Humidity sensors based on pentacene thin-film transistors” Appl. Phys. Lett., Vol.81, No. 24, pp4643-4645 (2002).
[34] S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov “Essential Role of Correlations in Governing Charge Transport in Disordered Organic Materials ” Phys. Revi. Lett., Vol81 , No 20, pp.4472-4475 (1998).
[35] D. J. Gundlacha) and T. N. Jackson“ Solvent-induced phase transition in thermally evaporated pentacene films”, Appl. Phys. Lett., Vol.74, No.22, pp.3302-3305 (1999).
[36] J. H. Scho¨ and B. Batlogg, ” Modeling of the temperature dependence of the field-effect mobility in thin film devices of conjugated oligomers”, Appl. Phys. Lett., Vol.74, No.22, pp.3302-3305(2004).
[37] D. H. Dunlap, P. E. Parris, and V. M. Kenkre ” Charge-Dipole Model for the Universal Field Dependence of Mobilities in Molecularly Doped Polymers” Phys. Rev. Lett., Vol.77, No.3, pp.542-545(1996).

無法下載圖示 全文公開日期 2011/07/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE