簡易檢索 / 詳目顯示

研究生: 張元碩
Yuan-Shuo Chang
論文名稱: 低輸入電流漣波之非對稱全橋電能轉換器
Input Current Ripple Reduction Asymmetrical Full-Bridge Converters
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 林長華
Chang-Hua Lin
林景源
Ching-yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 106
中文關鍵詞: 低輸入電流漣波s全橋轉換器
外文關鍵詞: Input Current Ripple ReductionsFull-Bridge cover
相關次數: 點閱:204下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

直流對直流電能轉換器擁有高效率、高功率密度在近期被高度要求。全橋轉換器因為擁有低電壓低電流開關應力,因此在高輸入電壓與高功率應用下非常適合。然而傳統對稱控制全橋轉換器因為有變動的死區時間,產生極大的切換損失使得功率密度受到限制。
為使全橋轉換器達成軟切換,擁有固定死區間控制如項一種被廣泛應用,然而只靠固定死區間來達成零電壓切換是不夠的,廣泛的應變方式是加入外加諧振電感來提供額外諧振能量,然而大的諧振電感會造成大的週期損失,也因此影響轉換器穩壓行為。
此外,相移控制的循環損失不但造成導通損師的增加也造成轉換器效率下降,為了消除此問題,不對稱控制是比像一控制較佳的控制方式。
因為脈衝輸入電流,不對稱控制繼承了降壓型轉換器擁有di/dt的特徵,到目前為止導致最後須加入大的電磁干擾濾波器。
為了降低傳統不對稱種全橋轉換器的輸入電流漣波和達成零電壓切換,因此產生本研究動機提出低輸入電流漣波之對稱全橋轉換器。
利用輸入電壓範圍為300到400伏、輸出功率為12伏30安培、操作頻率為100k赫茲的規格來執行電路分析,以及利用實驗測試操作原理,來展現轉換器的可行性。


DC-DC converters with a high efficiency and high power density are currently in high demand. Full-bridge converter has high efficiency performance owing to its low voltage and current stress. Consequently, it is suitable for high-input-voltage and high-power power conversion applications. Employing conventional symmetrical control scheme, however, full-bridge converter has a large switching loss because of its variable dead-time. Therefore, the power density is limited.
Accordingly, a fixed dead-time control such as phase-shift control is widely used for a full-bridge converter. To achieve zero-voltage switching (ZVS) under wide line and load operation, however, sufficient leakage inductance energy should be also provided. It causes a larger duty-cycle loss, which affect the regulating behavior of the converter.
Moreover, the circulation loss of phase-shift control not only increases the conduction loss but also decreases the efficiency of converters. To eliminate this problem, an asymmetrical control signal may be better than a phase-shift control signal.
Moreover, there is a circulation loss with phase-shift control. It increases the conduction loss and limits efficiency performance. To alleviate this problem, an asymmetrical control is selected instead.
Inheriting the characteristic of the Buck converter, the conventional asymmetrical control has a large di/dt noise that is generated by the pulsating input current waveform. As the result, a larger electromagnetic interference (EMI) filter must be added, which is the only proposed solution so far.
To reduce the input current ripple of a conventional asymmetrical full-bridge converter with ZVS, the proposed input-current ripple-reduction asymmetrical full-bridge converter becomes the motivation of this research.
To demonstrate the feasibility of the converter, the operational principle was experimentally tested, and a circuit analysis was performed on the proposed converters with an operating frequency of 100 kHz, input voltage range of 300-400V, and output power of 12V/30A.
Keywords: input-current ripple reduction, zero-voltage switching (ZVS), asymmetrical full-bridge.

Abstract …………………………………………………………………………… I Acknowledgement ………………………………………………………………… III Table of Content …………………………………………………………………IV List of Figures …………………………………………………………………… VII List of Table ………………………………………………………………………XI Chapter 1. Introduction …………………………………………………………1 1.1. Background and Motivation……………………………………………… 1 1.2. Objective of Thesis…………………………………………………………9 1.3. Organization of Thesis …………………………………………………… 10 Chapter 2. Conventional Asymmetrical Full-Bridge Converter (AFB) …… 12 2.1. Introduction ……………………………………………………………12 2.2. Operational Principle ………………………………………………………20 2.3. Circuit Analysis ……………………………………………………………26 2.3.1. Voltage Gain………………………………………………………… 26 2.3.2. Transformer DC-bias current ………………………………………27 2.3.3. ZVS condition………………………………………………………29 2.3.4. Input Current Ripple…………………………………………………30 2.3.5. Voltage Stress of witches…………………………………………… 32 2.3.6. Duty Cycle Loss……………………………………………………33 2.3.7. No circulation………………………………………………………33 2.4. Circuit Design…………………………………………………………… 34 2.4.1. Transformer………………………………………………………… 35 2.4.2. Output inductor …………………………………………………… 38 2.4.3. Output capacitor CO………………………………………………… 39 2.4.4. Clamping capacitor C1……………………………………………… 39 2.4.5. Semiconductor components………………………………………… 39 2.5. Experimental results……………………………………………………… 40 2.6. Summary………………………………………………………………… 47 Chapter 3. Input Current Ripple Reduction Asymmetrical Full-Bridge Converter (RR-AFB)……………………………………………………………… 49 3.1. Introduction……………………………………………………………… 49 3.2. Operational Principle ………………………………………………………52 3.3. Circuit Analysis ……………………………………………………………57 3.3.1. Voltage Gain………………………………………………………… 57 3.3.2. Transformer DC-bias current ……………………………………… 58 3.3.3. ZVS condition………………………………………………………60 3.3.4. Input Current Ripple………………………………………………… 62 3.3.5. Voltage stress of Switches……………………………………………64 3.3.6. Duty Cycle Loss……………………………………………………65 3.4. Circuit Design…………………………………………………………… 65 3.4.1. Clamping Capacitors , C1 and C2………………………………… 66 3.5. Experimental Results………………………………………………………66 3.6. Summary………………………………………………………………… 72 Chapter 4. Conclusions and Future Research ………………………………… 75 4.1. Conclusions……………………………………………………………… 75 4.2. Future Research……………………………………………………………79 References ………………………………………………………………………… 80   List of Figures Fig. 1-1. Circuit diagram of full-bridge converter…………………………………… 1 Fig. 1-2. Variable dead-time of symmetrical full-bridge converter……………………3 Fig. 1-3. Resonant Vds waveform and control signal of Symmetrical Full-Bridge during dead-time…………………………………………………………………4 Fig. 1-4. (a) Circuit diagram and (b) control signal of the Phase-Shift Full-Bridge converter…………………………………………………………………………4 Fig. 1-5. Voltage resonant waveform and control signal during dead-time………… 5 Fig. 1-6. Resonant Stage of the Full-Bridge converter……………………………… 5 Fig. 1-7. The control signal and the duty cycle loss waveform………………………6 Fig. 1-8. The control signal waveform and circulation area of the PSFB converter 6 Fig. 1-9. Circulation stage circuit diagram of the PSFB converter when S1 and S3 are turned on……………………………………………………………………7 Fig. 1-10. Circulation stage circuit diagram of the PSFB converter when S2 and S4 are turned on……………………………………………………………………7 Fig. 1-11. Asymmetrical control signal………………………………………………8 Fig. 1-12. (a) Circuit diagram and (b) control signal of low input current ripple phase-shift full-bridge converter…………………………………………………9 Fig. 1-13. (a) Circuit diagram, (b) control signal of input current ripple reduction asymmetrical full-bridge converter……………………………………………10 Fig. 2-1. Circuit diagram of the full-bridge converter……………………………… 12 Fig. 2-2. Variable dead-time of the symmetrical full-bridge converter…………… 14 Fig. 2-3. Resonant Vds waveform and control signal of the symmetrical Full-Bridge converter during dead-time…………………………………………………… 15 Fig. 2-4. (a) Circuit diagram and (b) control signal of the Phase-Shift Full-Bridge converter……………………………………………………………………… 15 Fig. 2-5. Voltage resonant waveform and control signal during dead-time………… 16 Fig. 2-6. Resonant Stage of the Full-Bridge converter……………………………… 16 Fig. 2-7. The control signal and the duty cycle loss waveform…………………… 17 Fig. 2-8. The control signal waveform and circulation area of the PSFB converter 17 Fig. 2-9. The circulation stage circuit diagram of the PSFB converter when S1 and S3 are turned on……………………………………………………………… 18 Fig. 2-10. The circulation stage circuit diagram of the PSFB converter when S2 and S4 are turned on……………………………………………………………… 18 Fig. 2-11. Asymmetrical control signal………………………………………………19 Fig. 2-12. Circuit of diagram of the AFB converter………………………………… 21 Fig. 2-13. Circuit waveform of the AFB converter…………………………………21 Fig. 2-14. Equivalent Circuit of the AFB converter for [t0-t1]………………………24 Fig. 2-15. Equivalent Circuit of the AFB converter for [t1-t2]………………………24 Fig. 2-16. Equivalent Circuit of the AFB converter for [t2-t3]………………………24 Fig. 2-17. Equivalent Circuit of the AFB converter for [t3-t4]……………………… 25 Fig. 2-18. Equivalent Circuit of the AFB converter for [t4-t5]………………………25 Fig. 2-19. Equivalent Circuit of the AFB converter for [t5-t6]………………………25 Fig. 2-20. Gain curve of the conventional asymmetrical full-bridge converter……26 Fig. 2-21. The relationship of winding NP1 with IC1 when (a) S1 and S4 turned on, (b) S2 and S3 turned on…………………………………………………………27 Fig. 2-22. DC-bias of the AFB converter under high-line light-load and low-line full-load…………………………………………………………………………28 Fig. 2-23. Circuit diagram of the AFB converter for ZVS condition………………29 Fig. 2-24. The key waveform of the AFB converter for ZVS condition……………29 Fig. 2-25. (a) Circuit diagram and (b) input current branch waveforms of the AFB converter………………………………………………………………………31 Fig. 2-26. (a) Circuit diagram with key primary current and (b) the primary key current waveforms of the AFB converter………………………………………34 Fig. 2-27. Voltage waveforms of the AFB converter power switches under (a) high-line light-load, (b) high-line full-load, (c) low-line light-load, and (d) low-line full-load………………………………………………………………42 Fig. 2-28. AFB ZVS voltage waveform at Vin = 300V Vo = 12V; (a) Io = 3A, (b) Io = 30A, (c) Io = 3A, (d) Io = 30A…………………………………………………43 Fig. 2-29. AFB ZVS voltage waveform at Vin = 400V Vo = 12V, (a) Io = 3A, (b) Io = 9A, (c) Io = 3A, (d) Io = 9A……………………………………………………44 Fig. 2-30. ZVS voltage waveform of the AFB converter at Vin = 400V Vo = 12V; (a) Io = 10A, (b) Io = 30A, (c) Io = 10A, and (d) Io = 30A………………………45 Fig. 2-31. Duty cycle loss of the AFB converter at Vin = 300V, Vo = 12V, Io = 30A …………………………………………………………………………………46 Fig. 2-32. The measured efficiency of the AFB converter…………………………46 Fig. 2-33. Input current ripple waveform of the AFB converter……………………48 Fig. 3-1. Circuit diagram of low input-current ripple phase-shift full-bridge converter……………………………………………………………………… 49 Fig. 3-2. Control signal of low input-current ripple phase-shift full-bridge converter……………………………………………………………………… 50 Fig. 3-3. Circuit diagram of input-current ripple-reduction asymmetrical full-bridge converter……………………………………………………………………… 50 Fig. 3-4. Control signal of input-current ripple-reduction asymmetrical full-bridge converter……………………………………………………………………… 51 Fig. 3-5. Conventional asymmetrical full-bridge converter………………………… 51 Fig. 3-6. Input-current ripple reduction asymmetrical full-bridge converter……… 52 Fig. 3-7. Circuit diagram of the RR-AFB converter……………………………… 53 Fig. 3-8. Circuit waveform of the RR-AFB converter……………………………… 53 Fig. 3-9. Equivalent circuit of the RR-AFB converter for [t0-t1]……………………55 Fig. 3-10. Equivalent circuit of the RR-AFB converter for [t1-t2]…………………56 Fig. 3-11. Equivalent circuit of the RR-AFB converter for [t2-t3]………………… 56 Fig. 3-12. Equivalent circuit of the RR-AFB converter for [t3-t4]…………………49 Fig. 3-13. Equivalent circuit of the RR-AFB converter for [t4-t5]…………………57 Fig. 3-14. Equivalent circuit of the RR-AFB converter for [t5-t6]………………… 57 Fig. 3-15. Gain curve of the RR-AFB converter……………………………………58 Fig. 3-16. Relationship of winding NP2 with ICC and IC……………………………59 Fig. 3-17. DC-bias of the RR-AFB converter under high-line light-load and low-line full-load…………………………………………………………………………60 Fig. 3-18. Circuit diagram of the RR-AFB converter for the ZVS condition……… 61 Fig. 3-19. Key waveform of the RR-AFB converter for the ZVS condition………61 Fig. 3-20. (a) Circuit diagram and (b) input current branch waveforms of the RR-AFB converter……………………………………………………………63 Fig. 3-21. Voltage waveforms of the RR-AFB power switches under (a) high-line light-load, (b) high-line full-load, (c) low-line light-load, and (d) low-line full-load…………………………………………………………………………68 Fig. 3-22. RR-AFB ZVS voltage waveform at Vin = 300V, Vo = 12V; (a) Io = 3A, (b) Io = 30A, (c) Io = 3A, and (d) Io = 30A…………………………………………68 Fig. 3-23. ZVS voltage waveforms of the RR-AFB converter at Vin = 400V, Vo = 12V; (a) Io = 3A, (b) Io = 30A, (c) Io = 3A, and (d) Io = 30A…………………70 Fig. 3-24. Duty cycle loss of the RR-AFB converter at Vin = 300V, Vo = 12V, Io = 30A……………………………………………………………………………71 Fig. 3-25. Input current ripple of the RR-AFB converter at Vin = 300V, Vo = 12V, Io = 30A……………………………………………………………………………71 Fig. 3-26. Measured efficiency of the RR-AFB converter…………………………72 Fig. 4-1. Comparison of the input-current ripple……………………………………77 Fig. 4-2 Comparison of the duty-cycle loss at Vin = 300V, Vo = 12V/Io = 30A……77 Fig. 4-3. Comparison between the AFB and RR-AFB converters…………………78   List of Table Table. 2-1. The parameters of core of EER35 core ………………………………… 35 Table. 2-2. Specifications of the 2SK3528 …………………………………………40 Table. 2-3. Specifications of the 40CPQ100……………………………………… 40 Table. 2-4. Specifications and main parameters of the AFB converter……………41 Table. 2-5. Experimental results of the AFB converter features…………………… 48 Table. 3-1. Specifications and main parameters of the RR-AFB converter……… 67 Table. 3-2. Experimental results for RR-AFB features…………………………… 73 Table. 4-1. Specifications and main parameters of the AFB and RR-AFB converters……………………………………………………………………76 Table. 4-2. Experimental results for features of AFB and RR-AFB converters……79

[1] Q. Zhao, F. F. Tao and F. C. Lee, “A front-end DC/DC converter for network
server applications,” IEEE Power Electronics Specialists Conference, vol.3, pp.
1535-1539, 2001.
[2] W. Fan and G. Stojcic, “Simple zero voltage switching full-bridge DC bus
converters,” IEEE Applied Power Eletronics Conference and Exposition, vol. 3,
pp.1611-1617, Mar. 2005.
[3] G. C. Hsieh, J. C. Li, M. H. Liaw, J. P. Wang and Tsai-Fu Hung, “A study on
full-bridge zero-voltage-switched PWM converter: design and experimentation,”
IEEE Industrial Electronics, Control, and Instrumentation, vol.2, pp. 1281-1285,
Nov. 1993.
[4] J. A. Sabate, V. Vlatkovic, R. B. Ridley and F. C. Lee, “High-voltage,
high-power, ZVS, full-bridge PWM converter employing an active snubber,”
IEEE Applied Power Eletronics Conference and Exposition, pp. 158-163, Mar.
1991.
[5] J. A. Sabate, V. Vlatkovic, R. B. Ridley, F. C. Lee and B. H. Cho, “Design
considerations for high-voltage high-power full-bridge zero-voltage-switched
PWM converter,” IEEE Applied Power Eletronics Conference and Exposition,
pp. 275-284, Mar. 1990.
[6] R. Redl, N. O. Sokal and L. Balogh, “A novel soft-switching full-bridge DC/DC
converter: analysis, design considerations, and experimental results at 1.5 kW,
100 kHz,” IEEE Transaction on Power Electronic, vol.6, no.3, pp. 408-418, Jul.
1991.
[7] J. B. Wang, R. Li and J. Chen, “Efficiency comparison of the full bridge
converters in considered magnetic saturation,” IEEE Industrial Electronics,
Control, and Instrumentation, pp. 717-722, Nov. 2008.
[8] Z. Chen, W. Xinke and Z. M. Qian, “Optimum design considerations for
Soft-switched Phase-shift Full-bridge converter with primary-side energy storage
inductor,” IEEE Power Electronics Specialists Conference, pp. 366-371, June.
2008.
[9] R. Redl, L. Balogh and D. W. Edwards, “Optimum ZVS full-bridge DC/DC
converter with PWM phase-shift control: analysis, design considerations, and
experimental results,” IEEE Applied Power Eletronics Conference and
Exposition, vol.1, pp. 159-165, Feb.1994.
[10] B. Y. Chen and Y. S. Lai, “Novel dual mode operation of phase-shifted full
bridge converter to improve efficiency under light load condition,” IEEE
Energy Conversion Congress and Exposition, pp. 1367-1374, Sept. 2009.
[11] L. H. Mweene, C. A. Wright and M. F. Schlecht, “A 1 kW 500 kHz front-end
converter for a distributed power supply system,” IEEE Transaction on Power
Electronic, vol.6, no.3, pp. 398-407, Jul. 1991.
[12] Z. Chen, W. Xinke and Z. M. Qian, “Design and comparison of two front-end
dc/dc Converters: LLC resonant converter and soft-switched phase-shifted
full-bridge converter with primary-side energy storage inductor,” IEEE Applied
Power Eletronics Conference and Exposition, pp. 1073-1077, Feb. 2009.
[13] K. M. Cho, Y. D. Kim, I. H. Cho, B. C. Kim and G. W. Moon, “A new separated
resonant-inductor winding phase shift full bridge converter for server power
system,” IEEE Energy Conversion Congress and Exposition, pp. 2089-2094,
Sept. 2009.
[14] C. Iannello, L. Shiguo and I. Batarseh, “Small-signal and transient analysis of a
full-bridge, zero-current-switched PWM converter using an average model,”
IEEE Transaction on Power Electronic, vol.18, no.3, pp. 793- 801, May. 2003.
[15] X. F. Xu, “Small-signal model for current mode control full-bridge phase-shifted
ZVS converter,” IEEE Power Electronics and Motion Control Conference, vol.1,
pp. 514-518, 2000.
[16] T. F. Wu, C. T. Tsai, Y. M. Chen and C. L. Shen, “A Current-Doubler Rectifier
with Coupled Inductors for High Step-Down Applications,” IEEE Power
Electronics Specialists Conference, pp. 18-22, Jun. 2006.
[17] W. Chen, F. C. Lee, M. M. Jovanovic and J. A. Sabate, “A comparative study of a
class of full bridge zero-voltage-switched PWM converters,” IEEE Applied
Power Eletronics Conference and Exposition, vol.2, pp. 893-899, Mar. 1995.
[18] Y. Jang and M. M. Jovanovic, “A new PWM ZVS full-bridge converter,” IEEE
Applied Power Eletronics Conference and Exposition, pp. 19-23, Mar. 2006.
[19] P. K. Jain, W. Kang, H. Soin and Y. H. Xi, “Analysis and design considerations of
a load and line independent zero voltage switching full bridge DC/DC converter
topology,” IEEE Transaction on Power Electronic, vol.17, no.5, pp. 649- 657,
Sep. 2002.
[20] C. S. Leu and J. B. Hwang, “A built-in input filter forward converter,” IEEE
Power Electronics Specialists Conference, pp. 917-922, 1994.
[21] C. S. Leu, J. B. Hwang and F. C. Lee, “A novel forward configuration for
DC-DC application: built-in input filter forward converter (BIFFC),” IEEE
Applied Power Eletronics Conference and Exposition, vol. 1, pp. 43-49, Mar.
1995.
[22] C. S. Leu, “A novel forward configuration for off-line applications: two-switch
built-in input filter forward converter (2SBIFFC),” IEEE Industrial Electronics,
Control, and Instrumentation, vol. 2, pp. 1035-1040, Aug. 1996.
[23] M. Shoyama and K. Harada, “Zero-voltage-switched push-pull DC-DC
converter,” IEEE Power Electronics Specialists Conference, pp. 223-229, Jun.
1991.
[24] J. Cruz, M. Castilla, J. Miret, J. Matas, J. M. Guerrero, “Averaged large-signal
model of single magnetic push-pull forward converter with built-in input filter,”
IEEE International Symposium on Industrial Electronics, vol.2, pp. 1023- 1028,
May. 2004.
[25] Z. Yao, L. Xiao and Y. Yan, “A family of zero-voltage-switching DC-DC
transformers,” IEEE Applied Power Eletronics Conference and Exposition, pp.
19-23, Mar. 2006.
[26] W. Hu, Y. Pei and Z. Wang, “Development of DC-DC Multiple Converter based
on Push-pull Forward Topology,” IEEE Power Electronics and Motion Control
Conference, vol.1, pp. 1-4, 14-16, Aug. 2006.
[27] F. H. Zhang, H. H. Qin, H. H. Wang and Y. G. Yan, “Freewheeling current in
push-pull forward converter,” IEEE Power Electronics Specialists Conference,
vol.1, pp. 353- 358, Jun. 2003.
[28] D. Jia, T. Xu, Z. Ju and Q. Niu, “Strategy on Eliminating Transformer Bias
Magnet in Push-Pull Forward Converter,” IEEE Power and Energy Engineering
Conference, pp. 27-31, Mar. 2009.
[29] M. Ye, P. Xu, B. Yang and F. C. Lee, “Investigation of topology candidates for 48
V VRM,” IEEE Applied Power Eletronics Conference and Exposition, vol.2, pp.
699-705, 2002.
[30] X. W. Zhou, B. Yang, L. Amoroso, F. C. Lee and P. L. Wong, “A novel
high-input-voltage, high efficiency and past transient voltage regulator
module-push-pull forward converter,” IEEE Applied Power Eletronics
Conference and Exposition, vol.1, pp. 279-283, Mar. 1999.
[31] P. Xu, M. Ye and F. C. Lee, “Single magnetic push-pull forward converter
featuring built-in input filter and coupled-inductor current doubler for 48 V
VRM,” IEEE Applied Power Eletronics Conference and Exposition, vol.2, pp.
843-849, 2002.
[32] J. Cruz, M. Castilla, J. Miret, J. Matas and J. L. Sosa, “Control techniques for the
single magnetic push-pull forward converter with built-in input filter,” IEEE
International Symposium on Industrial Electronics, vol.2, pp. 769- 774, Jun.
2005.
[33] E. Herbert, “Analysis of the near zero input current ripple condition in a
symmetrical push-pull power converter,” IEEE Transaction on High Frequency
Power Conversion, pp. 357-371, 1989.
[34] P. Xu, J. Wei, K. W. Yao, Y. Meng and F. C. Lee, “Investigation of candidate
topologies for 12 V VRM,” IEEE Applied Power Eletronics Conference and
Exposition, vol.2, pp. 686-692, 2002.
[35] C. Zhao, X. Wu and Z. M. Qian, “The analysis and evaluation for the leakage
inductance effects of two front-end Dc/Dc converters with capacitive output
filter,” IEEE Telecommunications Energy Conference, vol., pp. 14-18, Sept.
2008.
[36] W. J. Lee, K. B. Park, T. W. Heo and G. W. Moon, “Output inductor less phase
shift full bridge converter with current stress reduction technique for server
power application,” IEEE Power Electronics Specialists Conference, pp.
2517-2522, Jun. 2008.
[37] C. S. Leu, “Improved forward topologies for DC-DC applications with built-in
input filter,” Ph.D. dissertation, Virginia Polytechnic Institute and State
University, Electrical and Computer Engineering Dept., Virginia, 2006.
[38] C. S. Leu, “A novel full-bridge configuration for high-power applications:
built-in input filter full-bridge converter (BIFFBC),” IEEE Power Electronics
Specialists Conference, vol.1, pp. 763-768, Jun. 1997.
[39] Data handbook soft ferrites and accessories, Product Selection Guide 2003,
http://www.ferroxcube.com/.
[40] Magnetic power Cores, Technical Data, http://www.dongbufinechem.com.
[41] “SIMPLIS reference manual” Catena software Ltd.
http://www.catena.uk.com/site/downloads/manuals.htm.
[42] X. Zhou , B. Yang , L. Amoroso , F. C. Lee , and P. L. Wong , “A novel
high-input-voltage , high efficiency and past transient voltage regulator
module-push-pull forward converter ,” Applied power Electron. Conf. and
Expo.(APEC) , COL.1 , Dallas , TX., Mar. 14-18, 1999, pp.279-283.
[43] J. Wei, P. Xu, and F. C. Lee, “A high efficiency topology for 12V VRM-
push-pull buck ant its integrated magnetic implementations,” Applied Power
Electron. Conf. and Expo. (APEC), vol. 2, Dallas, TX.,2002, pp.679-685.
[44] P. Xu, M. Yo, P. L. Wong, and F. C. Lee, “Design of 48V Voltage regulator
modules with a novel integrated magnetic, ”IEEE Trans. Power Electron., vol.
17, no. 6, pp.990-998, Nov.2002.
[45] P. Xu, M. Yo, and F. C. Lee, “Design of 48V Voltage regulator modules with a
novel integrated magnetic, ”IEEE Trans. Power Electron., vol. 17, no. 6, pp.
990-998, Nov.2002.
[46] P. Xu, M. Ye, and F. C. Lee, “Single magnetic push-pull forward converter
featuring built-in input filter and coupled-inductor current double for 48V VRM,
” Applied Power Electron. Conf. and Expo. (APEC), vol. 2, Dallas, TX., 2002,
pp.843-849.
[47] J. Cruz, M. Castilla, J. Miret, J. Matas, and J. M. Guerrero, “Averaged
larger-signal model of signal magnetic push-pull forward converter with built-in
input filter,” Proc. IEEE Int. Symp. on Ind. Electron., vol. 2, June 20-23 2005,
pp.769-774.
[48] F. Zhang, H. Qin, H. Wang, and Y. Yan, “Freewheeling current in push-pull
forward converter,” in 34th Annu. IEEE Power Electron. Spec Conf. (PESC), vol.
1, June 15-19, 2003, pp.353-358.
[49] X. Zhou, “Low-voltage High-efficiency Fast-transient Voltage regulator Module,
” Ph.D. dissertation, Univ. of Virginia Polytechnic Institute and State, Elect.
Comput. Eng. Dept., Blacksburg, Virginia, 1999.
[50] Y. Xia, H. Wu, W. Liu, Y. Xing, and X. Ma, “A novel push-pull forward converter
for high reliability and high input voltage applications,” IEEE Energy
Conversion Congr. And Expo. (ECCE), Phoenix, AZ., Sep. 17-22, 2011,
pp.2506-2511.
[51] S. Mao, H. Wang, and Y. Yan, “A novel zero-voltage-switching push-pull DC-DC
converter for high input voltage and high power applications,” Proc. Eighth Int.
Conf. on Elrct. Mach. and Syst. (ICEMS), vol. 2, Nanjing, Sep. 29-29, 2005,
pp1152-1156.
[52] C. S. Leu, “Improved Forward Topologies for DC-DC Applications with Built-in
Input Filter,” Ph.D. dissertation, Univ. of Virginia Polytechnic Institute and State,
Elect. Comput. Eng. Dept., Blacksburg, Virginia, 2006.
[53] T. M. Chen and C. L. Chen, “Analysis and design of asymmetrical half bridge
flyback converter,” IEEE Trans. Power Electron, vol. 149, no. 6, pp. 433-440,
Nov. 2002.
[54] X. Xu, A. M. Khambadkone, T. M. Leong and R. Oruganti, “A 1-MHz
Zero-Voltage-Switching Asymmetrical Half-Bridge DC/DC Converter Analysis
and Design,” IEEE Trans. Power Electron, vol. 149, no. 6, pp. 433-440,
Nov.2002.
[55] G. Y. Jeong, “High efficiency asymmetrical half-bridge flyback converter using a
new voltage-driven synchronous rectifier,” Power Electron. IET, 2010, vol. 3,
Iss.1, pp.18-32.
[56] J. H. Jung, “Feed-Forward Compensator of Operating Frequency for APWM HB
Flyback Converter,” IEEE Trans. Ind. Electron, vol. 27, no. 1, pp-607-614,
Jan.2012.
[57] F. Sichirollo, J. M. Alonso and G. Spiazzi, “Use of Current Controlled Mutual
Inductor to Limit Recycling Current in the AHB-Flyback Converter,” in IEEE
38th Annu. Ind. Electron. Soc. Conf. (IECON), 2005, pp.4611-4616.
[58] X. Xu, A. M. Khambadkone and R. Oruganti, “An Asymmetrical Half Bridge
Flyback Converter with Zero-Voltage-Switching and Zero-Current-Switching,”
in IEEE 30th Annu, Ind. Electron. Soc. Conf. (IECON), Busan, Korea, Nov.2-6,
2004, pp.767-772, Vol. 1.
[59] TDK's European Website for Electronic Components & Systems [Online].
Available: http://www.tdk.co.jp/tefe02/e141.pdf
[60] SIMtrix Technologies Ltd. (2012). User's Manual. [Online]. Available
:http://www.simetrix.co.uk/Files/manuals/6.2/UsersManual.pdf
[61] Ching-Shan Leu, “Low Voltage Stress Power Converter,” U.S. Patent No.
7515439, Apr. 7, 2009.
[62] Ching-Shan Leu, “Power Converters,” U.S. Patent No. 7957161B2, June 7, 2011.

QR CODE