簡易檢索 / 詳目顯示

研究生: 馮康瑋
Kang-Wei Fong
論文名稱: 退火條件對二氧化鈰奈米顆粒中缺陷結構影響之研究
Effect of Annealing Process on the Defect Structure of Cerium Oxide Nanoparticles
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 黃炳照
Bing-Joe Hwang
宋振銘
Jenn-Ming Song
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 程溫還原吸收光譜奈米顆粒缺陷
外文關鍵詞: CeO2, TPR, XAS, XRD
相關次數: 點閱:387下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用共沉澱法製備未摻雜和摻雜11at%Cr之二氧化鈰奈米顆粒,在300℃不同氣氛(O2、Ar、Ar+H2)下進行退火,以控制CeO2的缺陷數量,再利用程溫還原(Temperature Programmed Reduction,TPR)實驗觀察不同缺陷含量之CeO2在不同溫度下改變與氫氣的反應關係。樣品的結構、尺寸及元素價態則以X 光繞射儀 (XRD)、場發射穿透式電子顯微鏡,及X光吸收光譜 (X-ray AbsorptionSpectroscopy,XAS) 進行。實驗結果顯示,在300℃下進行退火,CeO2奈米顆粒中的缺陷分布主要集中在表層,此種分布將影響樣品的還原能力,而Cr的摻雜將下一步改變CeO2與H2的反應。當樣品中的Cr為六價時,由於Cr亦反應,CeO2的還原能力將大幅提高。當樣品中的Cr為三價時,由於Cr周圍的結構變化,提高CeO2可產生還原反應的缺陷濃度。


In this study, the undoped and Cr-doped CeO2 nanoparticles were prepared by the co-precipitation methods, annealed to 300℃ n different atmospheres (O2, Ar, Ar + H2) to control the amounts of defects in the CeO2, and thenthe temperature programmed reduction (Temperature Programmed Reduction, TPR) experiments observed different defect content of CeO2 change reaction with hydrogen at different temperatures. The structure of the sample size and element valence state while the X-ray diffraction (XRD), field emission transmission electron microscopy, and X-ray absorption spectroscopy (X-ray AbsorptionSpectroscopy, XAS). The experimental results show that annealing at 300℃, the defect distribution of CeO2 nanoparticles are mainly concentrated in the surface, such a distribution will affect the reducing capacity of the sample, the next step change of Cr-doped CeO2 and H2 reaction. Of Cr in the samples for hexavalent Cr also reaction of CeO2 reduction capacity will substantially increase. When the product of Cr trivalent Cr around the structural changes to improve the CeO2 can produce a reduction reaction of the defect concentration.

摘要 I Abstract II 致謝 III 目錄 IV 圖索引 VIII 表索引 XI 第一章 緒論 1 1.1前言 1 1.2研究背景 2 1.3 研究動機與目的 3 第二章 文獻回顧與理論介紹 4 2.1 磁性理論 4 2.1.1 磁性來源 4 2.1.2 雙交換機制 (Double exchange mechanism ; DE)[18] 9 2.1.3 磁性質之分類 12 2.2 稀磁性半導體研究背景 14 2.3 二氧化鈰的基本性質 18 2.3.1 物理性質及晶體結構 18 2.3.2 光學性質 19 2.3.3 化學性質 19 2.4 二氧化鈰製備方法 21 2.4.1物理法 21 2.4.2化學法 22 2.5 利用沉澱法製備二氧化鈰奈米顆粒 25 2.6二氧化鈰的應用 28 2.7 程式升溫還原(TPR) 30 2.8 強金屬擔體作用力(SMSI)[59] 31 第三章 實驗方法 33 3.1 藥品及氣體 33 3.2 二氧化鈰奈米顆粒之製備 33 3.2.1 未掺雜之二氧化鈰奈米顆粒 34 3.2.2 摻雜鉻之二氧化鈰奈米顆粒 36 3.3 二氧化鈰奈米顆粒之熱處理 36 3.4 分析方法及樣品前處理 37 3.4.1 XRD分析 37 3.4.2 TEM分析 38 3.4.3 XAS分析 39 3.4.4 TPR分析 42 第四章 結果與討論 44 4.1不同退火條件對CeO2結構影響 44 4.1.1 氫氣程溫還原反應分析 44 4.1.2 XRD及TEM分析 46 4.1.3 XAS分析 49 4.2不同退火條件對摻雜鉻之CeO2結構影響 53 4.2.1氫氣程溫還原反應分析 53 4.2.2 XRD及TEM分析 55 4.2.3 XAS分析 58 4.3摻雜Cr之CeO2奈米顆粒在不同溫度下氧化之結構變化 63 4.3.1 XRD分析 63 4.3.2 XAS分析 65 4.3.3氫氣程溫還原反應分析 68 4.4摻雜Cr之CeO2奈米顆粒在不同還原氣氛下退火之結構變化 69 4.4.1 XRD分析 70 4.4.2 XAS分析 71 4.4.3氫氣程溫還原反應分析 75 4.5摻雜Cr之CeO2奈米顆粒在不同溫度下還原退火之結構變化 76 4.5.1 XRD分析 76 4.5.2 XAS分析 78 4.5.3氫氣程溫還原反應分析 82 第五章 結論 84 參考文獻 85

[1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, Science 287 (5455) (2000) 1019
[2] Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.-y. Koshihara, H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide, Science 291 (5505) (2001) 854
[3] W.K. Park, R.J. Ortega-Hertogs, J.S. Moodera, A. Punnoose, M.S. Seehra, Semiconducting and ferromagnetic behavior of sputtered Co-doped TiO2 thin films above room temperature, Journal of Applied Physics 91 (10) (2002) 8093
[4] M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Thin films: Unexpected magnetism in a dielectric oxide, Nature 430 (7000) (2004) 630
[5] N.H. Hong, J. Sakai, A. Ruyter, V. Brize, Does Mn doping play any key role in tailoring the ferromagnetic ordering of TiO2thin films?, Applied Physics Letters 89 (25) (2006) 252504.
[6] N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Role of defects in tuning ferromagnetism in diluted magnetic oxide thin films, Physical Review B 72 (4) (2005) 045336.
[7] N.H. Hong, J. Sakai, N. Poirot, V. Brize, Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films, Physical Review B 73 (13) (2006) 132404.
[8] H.S. Hsu, J.C.A. Huang, Y.H. Huang, Y.F. Liao, M.Z. Lin, C.H. Lee, J.F. Lee, S.F. Chen, L.Y. Lai, C.P. Liu, Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO, Applied Physics Letters 88 (24) (2006) 242507.
[9] H.S. Hsu, J.C.A. Huang, S.F. Chen, C.P. Liu, Role of grain boundary and grain defects on ferromagnetism in Co:ZnO films, Applied Physics Letters 90 (10) (2007) 102506.
[10] M.Y. Ge, H. Wang, E.Z. Liu, J.F. Liu, J.Z. Jiang, Y.K. Li, Z.A. Xu, H.Y. Li, On the origin of ferromagnetism in CeO2 nanocubes, Applied Physics Letters 93 (6) (2008) 062505.
[11] P. Loof, B. Kasemo, K.E. Keck, Oxygen storage capacity of noble metal car exhaust catalysts containing nickel and cerium, Journal of Catalysis 118 (2) (1989) 339
[12] M. Boaro, M. Vicario, C. de Leitenburg, G. Dolcetti, A. Trovarelli, The use of temperature-programmed and dynamic/transient methods in catalysis: characterization of ceria-based, model three-way catalysts, Catalysis Today 77 (4) (2003) 407
[13] S.C. 著,張煦、李學養譯, 磁性物理學, 聯經出版社 (1982).
[14] 郭光揚, 二氧化鈦薄膜室溫鐵磁性來源之研究, 國立成功大學物理研究所碩士論文 (2007).
[15] 戴道生、錢昆明等, 鐵磁學, 科學出版社 (2000).
[16] J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat Mater 4 (2) (2005) 173
[17] D.J. Priour, Jr., E.H. Hwang, S. Das Sarma, Disordered rkky lattice mean field theory for ferromagnetism in diluted magnetic semiconductors, Physical Review Letters 92 (11) (2004) 117201.
[18] C. Zener, Interaction between the d shells in the transition metals, Physical Review 81 (3) (1951) 440
[19] 蔡銘宮, N-type 薄膜 (La0.7Ce0.3MnO3) 成長與特性研究, 國立中山大學物理學系研究所碩士論文 (2008).
[20] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Ferromagnetism as a universal feature of nanoparticles of the otherwise nonmagnetic oxides, Physical Review B 74 (16) (2006) 161306.
[21] M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, S. Yan, Relationship between the surface chemical states and magnetic properties of CeO2 nanoparticles, Applied Physics Letters 94 (15) (2009) 152511.
[22] N.H. Hong, J. Sakai, W. Prellier, A. Hassini, A. Ruyter, F. Gervais, Ferromagnetism in transition-metal-doped TiO2 thin films, Physical Review B 70 (19) (2004) 195204.
[23] Y.Q. Song, H.W. Zhang, Q.Y. Wen, H. Zhu, J.Q. Xiao, Co doping effect on the magnetic properties of CeO2 films on Si(111) substrates, Journal of Applied Physics 102 (4) (2007) 043912.
[24] H.-W.Z. Qi-Ye Wen, Yuan-Qiang Song, Qing-Hui Yang, Hao Zhu and John Q Xiao, Room-temperature ferromagnetism in pure and Co doped CeO2 powders, Journal of Physics: Condensed Matter 19 (2007) 246205.
[25] Z.D.-M. M. Radović, N. Paunović, M. Šćepanović, B. Matović and Z.V. Popović Effect of Fe2+ (Fe3+) Doping on structural properties οf CeO2 nanocrystals ,Acta Physica Polonica A 116 (2009) 84.
[26] N.V. Skorodumova, R. Ahuja, S.I. Simak, I.A. Abrikosov, B. Johansson, B.I. Lundqvist, Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles, Physical Review B 64 (11) (2001) 115108.
[27] S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiri, Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route, Materials Chemistry and Physics 115 (1) (2009) 423.
[28] 張宏毅, 二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性, 國立成功大學化學工程學系博士論文 (2005).
[29] P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Structure-dependent electronic properties of nanocrystalline cerium oxide films, Physical Review B 68 (3) (2003) 035104.
[30] M. Sugiura, Oxygen Storage materials for automotive catalysts: Ceria-Zirconia solid solutions, Catalysis Surveys from Asia 7 (1) (2003) 77.
[31] Z.L. Yinglin Liu, Azizan Aziz and Judith MacManus-Driscoll, Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies, Journal of Physics: Condensed Matter 20 (2008) 165201.
[32] G.L. Xiaobo Chen, Yiguo Su, Xiaoqing Qiu, Liping Li and Zhigang Zou, Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping, Nanotechnology 20 (2009) 115606.
[33] V. Boffa, T. Petrisor, S. Ceresara, L. Ciontea, F. Fabbri, P. Scardi, Laser-ablation deposition of CeO2 thin films on biaxially textured nickel substrates, Physica C: Superconductivity 312 (3–4) (1999) 202.
[34] L. Wu, H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y. Zhu, D.O. Welch, M. Suenaga, Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size, Physical Review B 69 (12) (2004) 125415.
[35] J. Liu, L. Wang, H. Wu, L. Mo, H. Lou, X. Zheng, Synthesis and characterization of CeO2; by the hydrothermal method assisted by carboxymethylcellulose sodium, Reaction Kinetics and Catalysis Letters 98 (2) (2009) 311.
[36] D.-S. Bae, B. Lim, B.-I. Kim, K.-S. Han, Synthesis and characterization of ultrafine CeO2 particles by glycothermal process, Materials Letters 56 (4) (2002) 610.
[37] K.J.L. Srivatsan Sathyamurthy, Reza T Dabestani and M Parans Paranthaman, Reverse micellar synthesis of cerium oxide nanoparticles, Nanotechnology 16 (2005) 1960.
[38] S. Gopalan, S.C. Singhal, Mechanochemical synthesis of nano-sized CeO2, Scripta Materialia 42 (10) (2000) 993.
[39] 連昭晴, 鐵/金核殼型磁性複合奈米粒子之製備與應用, 國立成功大學化學工程學系 (2004).
[40] N. Laosiripojana, S. Assabumrungrat, Catalytic steam reforming of ethanol over high surface area CeO2: The role of CeO2 as an internal pre-reforming catalyst, Applied Catalysis B: Environmental 66 (1–2) (2006) 29.
[41] X.-D. Zhou, W. Huebner, H.U. Anderson, Room-temperature homogeneous nucleation synthesis and thermal stability of nanometer single crystal CeO2, Applied Physics Letters 80 (20) (2002) 3814.
[42] P.-L. Chen, I.W. Chen, Reactive cerium(iv) oxide powders by the homogeneous precipitation method, Journal of the American Ceramic Society 76 (6) (1993) 1577.
[43] J.-G. Li, T. Ikegami, Y. Wang, T. Mori, Reactive ceria nanopowders via carbonate precipitation, Journal of the American Ceramic Society 85 (9) (2002) 2376.
[44] S. Tsunekawa, R. Sivamohan, S. Ito, A. Kasuya, T. Fukuda, Structural study on monosize CeO2-x nano-particles, Nanostructured Materials 11 (1) (1999) 141.
[45] J.L.G. Fierro, S. Mendioroz, A.M. Olivan, Surface chemistry of cerium oxide prepared by an isobaric thermal procedure, Journal of Colloid and Interface Science 107 (1) (1985) 60.
[46] 李秋煌, 改善生活的仙丹, 科學發展 370 (2003) 29.
[47] T. Morimoto, H. Tomonaga, A. Mitani, Ultraviolet ray absorbing coatings on glass for automobiles, Thin Solid Films 351 (1–2) (1999) 61.
[48] R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Synthesis and UV-shielding properties of ZnO- and CaO-doped CeO2 via soft solution chemical process, Solid State Ionics 151 (1–4) (2002) 235.
[49] S. Yabe, T. Sato, Cerium oxide for sunscreen cosmetics, Journal of Solid State Chemistry 171 (1–2) 7-11.
[50] P.A. Atanasov, T. Okato, R.I. Tomov, M. Obara, (110)Nd:KGW waveguide films grown on CeO2/Si substrates by pulsed laser deposition, Thin Solid Films 453–454 (0) (2004) 150.
[51] M. Shirakawa, J. Unno, K. Aizawa, M. Kusunoki, M. Mukaida, S. Ohshima, Fabrication and characterization of a CeO2 buffer layer on c-plane and tilt-c-plane sapphire substrates, Physica C: Superconductivity 392–396, Part 2 (0) (2003) 1346.
[52] N. Izu, W. Shin, N. Murayama, Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder, Sensors and Actuators B: Chemical 93 (1–3) (2003) 449.
[53] N.M. Sammes, Z. Cai, Ionic conductivity of ceria/yttria stabilized zirconia electrolyte materials, Solid State Ionics 100 (1–2) (1997) 39.
[54] O.A. Marina, C. Bagger, S. Primdahl, M. Mogensen, A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance, Solid State Ionics 123 (1–4) (1999) 199.
[55] N.W. Hurst, S.J. Gentry, A. Jones, B.D. McNicol, Temperature programmed reduction, Catalysis Reviews 24 (2) (1982) 233.
[56] J.L. Falconer, J.A. Schwarz, Temperature-programmed desorption and reaction: applications to supported catalysts, Catalysis Reviews 25 (2) (1983) 141.
[57] W.R.A.M. Robinson, J.C. Mol, Characterization and catalytic activity of copper/alumina methanol synthesis catalysts, Applied Catalysis 44 (0) (1988) 165.
[58] J.H. Blank, J. Beckers, P.F. Collignon, G. Rothenberg, Redox kinetics of ceria-based mixed oxides in selective hydrogen combustion, ChemPhysChem 8 (17) (2007) 2490.
[59] 戴玉龍, 氧化釔添加對鎳觸媒擔載在氧化鈰擔體上行二氧化碳與甲烷重組反應之研究, 國立清華大學化學工程學系 (1999).
[60] S.J. Tauster, S.C. Fung, R.L. Garten, Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide, Journal of the American Chemical Society 100 (1) (1978) 170.
[61] S.J. Tauster, S.C. Fung, Strong metal-support interactions: Occurrence among the binary oxides of groups IIA–VB, Journal of Catalysis 55 (1) (1978) 29.
[62] M.-F. Luo, Y.-J. Zhong, X.-X. Yuan, X.-M. Zheng, TPR and TPD studies of CuOCeO2 catalysts for low temperature CO oxidation, Applied Catalysis A: General 162 (1–2) (1997) 121.
[63] J.B. Wang, W.-H. Shih, T.-J. Huang, Study of Sm2O3-doped CeO2/Al2O3-supported copper catalyst for CO oxidation, Applied Catalysis A: General 203 (2) (2000) 191.
[64] R. Craciun, Characterization of mixed amorphous/crystalline cerium oxide supported on SiO2, Solid State Ionics 110 (1–2) (1998) 83.
[65] P. Nachimuthu, W.-C. Shih, R.-S. Liu, L.-Y. Jang, J.-M. Chen, The study of nanocrystalline cerium oxide by x-ray absorption spectroscopy, Journal of Solid State Chemistry 149 (2) (2000) 408.
[66] S.G.a.M. Reichling, Structural elements of CeO2(111) surfaces, Nanotechnology 18 (2007) 044024.
[67] Z. Yang, Q. Wang, S. Wei, D. Ma, Q. Sun, The effect of environment on the reaction of water on the ceria(111) surface: A DFT+U study, The Journal of Physical Chemistry C 114 (35) (2010) 14891.

QR CODE