簡易檢索 / 詳目顯示

研究生: 顏楨原
Chen-yuan Yen
論文名稱: 多頻段色散延遲線之設計
Design of Multi-Band Dispersive Delay Line
指導教授: 徐敬文
Ching-Wen Hsue
口試委員: 張勝良
none
黃進芳
none
陳國龍
none
溫俊瑜
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 等長度二階殘段。色散延遲線離散時間Z 域誘發通帶技術微帶線
外文關鍵詞: Discrete-Time, Induced Pass-band, Equal-Length Two- Section Stubs
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本篇論文中,我們提出了以微帶線製作之2.7GHz 單頻段(sing-band)、0.9/1.14GHz 雙頻段(dual-band) 及0.9/1.14/2.7GHz 三頻段(tri-band)三種不同結構的色散延遲線 (Dispersive Delay Line),並以模擬及實作量測結果交相驗證本論文所提設計方法之正確性。色散延遲線設計方法說明如下:
1. 單頻段色散延遲線採用誘發通帶技術 (Induced Pass-band technique),利用並聯二個非對稱單段開路殘段 (open-circuited single-section stub)之架構實現。
2. 雙頻段色散延遲線採用離散時間Z 域技術 (Discrete-time Z Domain technique) 及等長度二階殘段技術 (Equal-Length, Two-Section Stub scheme),並聯三組等長度二階殘段之架構達成。
3. 三頻段色散延遲線係合成單頻群延遲傳輸線及雙頻群延遲傳輸線,並經過電路最佳化程序達成。
實作量測結果單頻段、雙頻段及三頻段色散延遲線在不包含50Ω傳輸線下,其面積分別為9.84 X 14.25 mm2、47.28 X 14.02 mm2 及48.39 X 26.33 mm2,與其他設計法相比,本篇論文所提出之DDL 結構可提供較大之群延遲及較簡單的電路結構。運用等長度二階殘段技術,將高次諧波移往更高頻,使DDL 工作頻率之選定更具彈性。


Three configurations of microstrip Dispersive Delay Line (DDL) are presented in the thesis. The three types of DDL are one single-banded Dispersive Delay Line operated at 2.7 GHz central frequency, one dual-banded Dispersive Delay Line operated at 0.9/1.14 GHz central frequencies and one tri-banded Dispersive Delay Line operated at 0.9/1.14/2.7 GHz central frequencies, respectively. Both simulation results and implementation results are given to validate the design in this thesis. The design philosophies of each Dispersive Delay Line are depicted as follows:
1. Single-band DDL is implemented by paralleling two asymmetric open-circuited single-stubs using Induced Pass-band technique.
2. Dual-band DDL adopts Discrete-Time Z Domain technique and Equal-Length, Two-Section Stub scheme. By paralleling three Equal-Length, Two-Section Stubs, the Dual-band DDL is developed.
3. Tri-band DDL is synthesized by integrating the single-band DDL and dual-band DDL into one circuit and executing the circuit optimization process.
The circuit sizes without 50Ω main line of the proposed single-band DDL, dual-band DDL and tri-band DDL are 9.84 X 14.25 mm2, 47.28 X 14.02 mm2 and 48.39 X 26.33 mm2, respectively.
Comparing with other design schemes, the presented DDLs in this thesis provide more excessive group delay, simpler profile and compact size. Furthermore, Equal-Length, Two-Section Stub scheme extends upper harmonic and gives more flexibility in selecting the operation frequency during design.

摘要...................................................................... I Abstract ................................................................. III 誌謝...................................................................... V Contents ................................................................. VII List of Figures............................................................ IX List of Tables ........................................................... XI Chapter 1 Introduction ................................................... 1 1.1 Motivation............................................................ 1 1.2 Proposal............................................................... 2 1.3 Organization of Chapters............................................... 3 Chapter 2 Basic Theory .................................................... 4 2.1 Fundamentals of Microstrip Lines ...................................... 4 2.2 Guided Wavelength, Propagation Constant and Phase Velocity ............ 7 2.3 Group Delay ........................................................... 8 2.4 Dispersive Property of Microstrip Lines ............................... 9 Chapter 3 Discrete-time Z Domain techniques ............................... 11 3.1 Chain-Scattering Parameters ........................................... 12 3.2 Fundamental Circuits and Their Chain-Scattering Parameters ............ 13 3.2.1 A serial Transmission Line Section .................................. 14 3.2.2 An Open-Circuited One-Section Stub .................................. 18 3.2.3 An Open-Circuited Two-Section Stub .................................. 20 3.3 Equal length two-section stub in Z domain ............................. 23 3.4 Parallel equal-length two-section stubs in Z domain ................... 27 Chapter 4 Induced pass-band technique for Dispersive Delay line ............29 4.1 Induced Single pass-band technique .................................... 29 4.2 Induced Dual pass-band technique ...................................... 33 4.3 Maximum group delay in induced pass-band .............................. 38 Chapter 5 Implementation and Experimental Results ......................... 43 5.1 The implementation of a Single-Band DDL ............................... 44 5.2 The implementation of a Dual-Band DDL ................................. 49 5.3 The implementation of a Tri-Band DDL .................................. 55 5.4 Microwave Signal Segregation using DDL................................. 64 Chapter 6 Conclusion ...................................................... 67 6.1 Conclusion ............................................................ 67 6.2 Future Work ........................................................... 69 References ................................................................ 70

[1]Christophe Caloz, Shulabh Gupta, Qingfeng Zhang, and Babak Nikfal, ” Analog Signal Processing,” physics.optics, Aug. 2013.
[2]Christophe Caloz, Shulabh Gupta, Babak Nikfal, and Qingfeng Zhang,”Analog Signal Processing (ASP) for High-Speed Microwave and Millimeter-Wave Systems,” Proceedings of APMC 2012, Kaohsiung, Taiwan, Dec. 4-7, 2012.
[3]S. Gupta, A. Parsa, E. Perret, , R. V. Snyder, Robert J. Wenzel, and Christophe Caloz, “Group-delay engineered noncommensurate transmission line all-pass network for analog signal processing,” IEEE Trans. Microw. Theory Tech., Vol. 58, no. 9, pp. 2392-2407, Sep. 2010.
[4]Shulabh Gupta, Babak Nikfal, and Christophe Caloz, “RFID system based on pulse-position modulation using group delay engineered microwave C-sections,” Proceedings of Asia-Pacific Microwave Conference 2010.
[5]Qingfeng Zhang, John W. Bandler, and Christophe Caloz, “Design of Dispersive Delay Structures (DDSs) Formed by Coupled C-Sections Using Predistortion with Space Mapping,” IEEE Trans. Microwave. Theory Tech., Vol. 61, no. 12, pp. 4040 - 4051, Dec. 2013.
[6]Shulabh Gupta, Babak Nikfal, and Christophe Caloz, “Chipless RFID System Based on Group Delay Engineered Dispersive Delay Structures,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 10, pp. 1366 - 1368, 2011.
[7]A. Lujambio, I. Arnedo, M. Chudzik, I. Arregui, T. Lopetegi, and M. A. G. Laso, “Dispersive Delay Line With Effective Transmission-Type Operation in Coupled-Line Technology,”IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 21, NO. 9, pp. 459-461, Sep. 2011.
[8]Girdhari Chaudhary, and Yongchae Jeong, ”Transmission-Line Negative Group Delay Networks With Improved Signal Attenuation,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 13, pp.1039-1042, 2014.
[9]Girdhari Chaudhary, and Yongchae Jeong, “Low Signal-Attenuation Negative Group-Delay Network Topologies Using Coupled Lines,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 62, NO. 10, Oct. 2014.
[10]Girdhari Chaudhary, Yongchae Jeong, and Jaejoong Im, “A Design of Reconfigurable Negative Group Delay Circuit Without External Resonators,” IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, VOL. 14, pp.883-886, 2015.
[11]Girdhari Chaudhary, Yongchae Jeong, and Jongsik Lim,Miniaturized, “Dual-Band Negative Group Delay Circuit Using Dual-Plane Defected Structures,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 24, NO. 8, pp.521-523, Aug. 2014.
[12]Omar F. Siddiqui, Mo Mojahedi, and George V. Eleftheriades, “Periodically loaded transmission line with effective negative refractive index and negative group velocity,” IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 10, pp.2619-2625, Oct. 2003.
[13]Mrinal Kanti Mandal, Dominic Deslandes, and Ke Wu, “Complementary Microstrip-Slotline Stub Configuration for Group Delay Engineering,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 22, NO. 8, pp.388-390, Aug. 2012.
[14]Yu-Wei Chang, Ching-Wen Hsue, Jiun-Yu Wen, and Yu-Ting Yeh, “Dispersive Delay Line With Large Group Delay Using Deformed Open Stub and its Complementary Slot Line,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 26, NO. 2, pp.122-124, Feb. 2016.
[15]C.-W. Hsue and Y.-W. Chang, “Group delay lines using microstrip technology,” submitted for publication in IET Microwave, Antenna & Propagation.
[16]Shulabh Gupta, Dimitrios L. Sounas, Hoang Van Nguyen, Qingfeng Zhang, and Christophe Caloz, “CRLH–CRLH C-Section Dispersive Delay Structures With Enhanced Group-Delay Swing for Higher Analog Signal Processing Resolution,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 60, NO. 12, pp.3939-2949, Dec. 2012.
[17]Samer Abielmona, Shulabh Gupta, and Christophe Caloz, “Experimental Demonstration and Characterization of a Tunable CRLH Delay Line System for Impulse Continuous Wave,” IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 12, pp.864-866, Dec. 2007.
[18]Omar F. Siddiqui, Suzanne J. Erickson, George V. Eleftheriades, and Mohammad Mojahedi, “Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 5, pp.1449-1454, MAY 2004.
[19]Shulabh GUPTA, and Christophe CALOZ, “Analog signal processing in transmission line metamaterial structure,” RADIOENGINEERING, VOL. 18, NO. 2, pp.155-167, JUNE 2009.
[20]Babak Nikfal, Shulabh Gupta, and Christophe Caloz, “Increased Group-Delay Slope Loop System for Enhanced-Resolution Analog Signal Processing,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 59, NO. 6,pp.1622-1628, JUNE 2011.
[21]Samer Abielmona, Shulabh Gupta, and Christophe Caloz, “Compressive Receiver Using a CRLH-Based Dispersive Delay Line for Analog Signal Processing,” IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 57, NO. 11, pp.2617-2636, Nov. 2009.
[22]Babak Nikfal and Christophe Caloz, “Low-complexity and frequency-scalable analog real-time FDM receiver based on a dispersive delay structure,” Proceedings of the 41st European Microwave Conference.
[23]D. M. Pozar, “Microwave Engineering,” 4th Ed., John Wiley & Sons, Inc., 2011.
[24]I. J Bahl and D. K. Trivedi, “A Designer’s Guide to Microstrip Line,” Microwave, May 1977.
[25]Born, Max; Wolf, Emil, ‘Principles of Optics. Cambridge”, Cambridge University Press, 1999.
[26]C.-W. Hsue, C.-W. Ling and W.-T Huang, “Discrete-time notch filter and its application to microwave filter,” Microw. Optical Technol. Lett., vol. 50, no. 6, pp. 1596-1600, Jun. 2008.
[27]L.-C. Tsai and C.-W. Hsue, “ Dual-band bandpass filters using equal-length coupled-serial-shunted lines and Z-transform Technique, ” IEEE Trans. Microw. Theory Tech., vol. 52, No.4, pp. 1111 – 1117 2004.
[28]K. C. Gupta, R. Grag and I. J. Bahl, “Microstrip Lines and Slot lines”, Artech House, Dedham, Mass.
[29]D. K. Cheng, “Field and Wave Electromagnetics,” 2nd Ed. Addison-Wesley Publishing Company, Inc., 1989.
[30]Y.-W. Chang and C.-W. Hsue, “Design of A Narrow Dual-band Band-pass Filter Using Induced Transmission Poles and z Domain Technique for 4G LTE Band-10 Applications,” submitted for publication in IEEE Trans. Microwave Theory Tech..
[31]D. Turner, R. Wihelm, W. Lemberg, “Line Calc.” Agilent Technologies. Palo Alto, CA, 2000.
[32]A. V. Oppenheim and R. W. Schafer, “Discrete-Time Signal Processing,” 2nd Ed. Englewood Cliffs, NJ: Prentice-hall, 2000.
[33]C. Quendo, E. Rius and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microwave Theory Tech., vol.51, no. 3, pp.734-743, Mar. 2003.

QR CODE