簡易檢索 / 詳目顯示

研究生: 杜鴻業
HUNG-YEH DU
論文名稱: 微刺激器整合人體通訊技術於醫療應用之研究
Micro-stimulator with Human Body Communication Technology for Medical Applications
指導教授: 陳俊良
Jiann-Liang Chen
口試委員: 呂學坤
Shyue-Kung Lu
王乃堅
Nai-Jian Wang
劉馨勤
Hsin-Chin Liu
楊竹星
Chu-Sing Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 71
中文關鍵詞: IEEE802.15.6人體通訊WBAN微刺激器
外文關鍵詞: IEEE 802.15.6, wireless body area network, human body communication, micro-stimulator
相關次數: 點閱:200下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

人體通訊(Human Body communication)是WBAN(Wireless Body Area Network)中的一種通訊方式,是以人體為媒介來進行訊號傳輸,與其它IEEE802.15無線標準的相比;該無線通訊技術中,對人體的安全有非常高的要求,並支持可靠的QoS、低功耗、數據速率等。微刺激器(Micro-stimulator) 是新興的治療裝置,在應用上通常是置於體內,來刺激特定的神經做為康復治療之使用,在電源上可分為用電池或用RF電源,使用RF供電有諸多優點:裝置體積小、安全性高等,為未來設計的趨勢。

本論文提出符合人體通訊技術之體內微刺激器,與體外讀取裝置的設計,其中包含溦刺激器的小型化實做、人體通訊的模擬測試與醫療應用的研究。研究成果顯示:溦刺激器的體積縮小至D=7x14mm,為膠囊狀適於植入人體,可於體內1.5cm處提供1mW的電能,來供給感測器、刺激探頭使用。人體通訊是使用電場通訊(Electric Field Communication)中的電耦合(Galvanic Coupling)技術,在通訊時可同時傳遞電力與訊號。微刺激器的硬體是以13.56MHz的感測晶片來進行設計,包含晶片內部溫度感測器以讀取體內溫度,與外部溫度感測器讀取刺激探頭的溫度,在治療同時進行溫度監控。在讀取器天線設計上,以環形天線置入鐵氧體片的方式,達到增加感應距離,改善磁場死角的目的。人體通訊模擬測試顯示,微刺激器的設計不受生理組織差異的影響,有高的訊雜比,可穩定於體內運作。最後在醫療應用上,刺激器的探頭是以光熱刺激的應用進行設計,經測試其功能可實際運用於臨床研究上。


HBC (Human Body Communication), one of WBAN (Wireless Body Area Network), transmits signals by using human body as medium. Comparing to other standards of IEEE820.15, HBC not only requires greater human safety, but also supports reliable QoS, low power consumption, data speed and so on. Micro-stimulator, an emerging therapy device, is usually installed inside human body; to excite the specific nerves for rehabilitation. Power Source could be either battery or RF power sourcing. Many advantages lie on utilizing RF power sourcing: smaller volume, higher safety and so on, those features will lead the trend of future design.

The thesis hereby brings up the followings: the inside body micro-stimulator in compliance with HBC; and the design of outside body reading apparatus. There are more included as below: miniaturizing real model of micro-stimulator, simulate measurement of human channel, and research of medical application. The results of research shows, that the volume of the micro stimulator has been cut down to the size of D=7mmx14mm, and the capsule-like micro stimulator generating electric energy of 1mW for stimulator probe, as well as sensor planted into the 1.5cm deep inside human body. Human communication utilizes the Galvanic Coupling Model of Electric Field Communication, and also adopts the existing 13.56MHz technique as the communication interface. Human communication is able to convey both electric power and signals at the same time. Communication hardware of micro-stimulator, including inside-chip temperature sensor for reading inside body temperature; and external temperature sensor for reading the temperature of stimulator probe, is designed based upon 13.56Mhz sensor chip. In designing the antenna of reader, circular loop antenna inserted into Ferrite sheet amplifies the strength of induction and also improve the integrity of magnetic field. The result of stimulate measurement of human channel, shows that, the design micro-stimulator herein will be less affected by differences of physiological organization; and the high ratio of signal to noise could stably work inside human body. As to the medical application, the probe of micro-stimulator is designed upon the application of optical heating stimulation; and the tests regarding the probe show that, the probe can actually work functionally in clinical experiment.

目 錄 中文摘要 ………………………………………………………………………Ⅰ 英文摘要…………………………………………………………………………Ⅱ 誌謝 ……………………………………………………………………………Ⅲ 目錄 ………………………………………………………………………………Ⅳ 圖目錄 ……………………………………………………………………………Ⅵ 表目錄 ……………………………………………………………………………Ⅸ 第一章 研究簡介 ……………………………………………………………1 1-1研究動機 …………………………………………………………………1 1-2研究成果 ………………………………………………………………2 1-3研究過程 …………………………………………………………………2 1-4研究內容 …………………………………………………………………3 第二章 相關技術探討 ………………………………………………………4 2-1 IEEE802.15.6 ……………………………………………………………4 2-2人體通訊 …………………………………………………………………7 2-3植入式微刺激器 …………………………………………………………9 2-4 微刺激器應用 …………………………………………………………11 2-5人體傳輸的安全考量 ……………………………………………………13 2-6 設計內容 …………………………………………………………………17 第三章 微刺激設計 …………………………………………………………18 3-1硬體設計 …………………………………………………………………18 3-2電路結構 …………………………………………………………………20 3-3溫度感測設計 …………………………………………………………21 3-4天線設計 ………………………………………………………………24 3-5測試板製作 …………………………………………………………28 3-6測試板測試 ……………………………………………………………29 3-7刺激探頭設計 ……………………………………………………………30 第四章 讀取器醫用設計 …………………………………………………31 4-1讀取器天線設計 …………………………………………………………31 4-2 天線參數量測 ……………………………………………………………32 4-3 天線場型改善 ……………………………………………………………36 4-4 讀取器效能測試 …………………………………………………………38 4-5 刺激功能測試 ……………………………………………………………41 4-6 溫度感測量測 ……………………………………………………………42 第五章 通訊模擬實驗 ……………………………………………………47 5-1通訊實驗設計 ……………………………………………………………48 5-2通訊介質對傳輸的影響 …………………………………………48 5-3導磁貼片對傳輸的影響 ………………………………………52 5-4體內通訊的干擾量測 ………………………………………………54 5-5 刺激應用分析 ……………………………………………………………57 5-6應用案例說明 …………………………………………………………60 第六章 結論與未來研究方向 ……………………………………………………67 6-1結論 …………………………………………………………………67 6-2 未來研究方向 …………………………………………………………68 參考文獻 ……………………………………………………………………69

[1] E. Lee, E. Matei, J. Gord, P. Hess, P. Nercessian, H. Stover, T. Li, and J. Wolfe, "A Biomedical Implantable FES Battery-Powered Micro-Stimulator," Proceedings of IEEE Transactions on Circuits and Systems I, pp. 2583-2596, 2009

[2] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V.C.M. Leung, “Body Area Networks: A Survey” Proceedings of Mobile Networks and Applications, pp. 171-193, 2011

[3] IEEE Standard for Local and metropolitan area networks - Part 15.6: Wireless Body Area Networks, IEEE Std 802.15.6-2012, pp. 1-271, 2012

[4] E. Olufemi, “Body Area Networks, Standardization, Analysis and Application,” Proceedings of Degree Program in Information Technology, 2013

[5] H. Li, K. Takizawa, and R. Kohno, "Trends and standardization of body area network (BAN) for medical healthcare," Proceedings of European Conference on Wireless Technology, pp. 1, 4, 27-28, 2008

[6] T. Kang, I. Lim, J. Hwang, C. Hyoung, H. Park, and S. Kang, "A Method of Increasing Data Rate for Human Body Communication System for Body Area Network Applications," Proceedings of IEEE Vehicular Technology Conference, pp. 1, 5, 3-6, 2012

[7] M. Seyedi, B. Kibret, D.T.H. Lai and M. Faulkner, "A Survey on Intrabody Communications for Body Area Network Applications," , Proceedings of IEEE Transactions on Biomedical Engineering, pp.2067-2079, 2013

[8] Y. Kado and M. Shinagawa, “Red-Tacton Near-body Electric-field Communications Technology and Its Applications,” Proceedings of NTT Technical Review, 2010

[9] J. E Ferguson and A D. Redish, “Wireless communication with implanted medical devices using the conductive properties of the body,” Proceedings of Wireless implanted devices special report. pp. 427–433, 2011

[10] T. A. Iyer, D. Tilak, K. Rahate, P. Sawant, and F. Crit, “Comparison of Approaches to Intra-body Communication,” Indian Journal of Computer Science and Engineering (IJCSE), Vol.3, No.5, pp. 731-736, 2012

[11] Y. Song, K. Zhang, Q. Hao, L. Hu, J. Wang, and F. Shang,. “A Finite-Element Simulation of Galvanic Coupling Intra-Body Communication Based on the Whole Human Body,” Proceedings of Sensors, pp. 13567-13582, 2012

[12] G. E. Loeb, F. J R Richmond, J. Singh, R.A Peck, W. Tan, Q. Zou, and N.Sachs, "RF-powered BIONs™ for stimulation and sensing," Proceedings of 2004. 26th Annual International Conference of the IEEE , pp. 4182-4185, 2004

[13] B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, “A Single-Channel Implantable Microstimulator for Functional Neuromuscular Stimulation,” Proceedings of IEEE Transactions on Biomedical Engineering, pp. 909-920, 1997

[14] S.Y. Lee and S. C. Lee, “An Implantable Wireless Bidirectional Communication Microstimulator for Neuromuscular Stimulation,” Proceedings of IEEE Transactions on circuits and Systems, pp. 2526-2538, 2005

[15] M. Kiani, and M. Ghovanloo, “An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications” Proceedings of IEEE Transactions on Circuits and Systems, pp. 260-264, 2010

[16] V.S. Polikov, M.L. Block, J.M. Fellous, J.S. Hong, and W.M. Reichert, “In vitro model of glial scarring around neuroelectrodes chronically implanted in the CNS,” Biomaterials Proceedings of Biomaterials, pp. 5368–5376, 2006

[17] "ANSI Standard C101.1", ANSI Standard for Leakage Current for Appliances, 1992

[18] Medical electrical equipment-Part 1: General requirements for basic safety and essential performance, AAMI ES60601-1: 2005

[19] Safe current limits for electromedical apparatus, ANSI/AMMI ES1-1993

[20] IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Std C95. 1-2005

[21] Guidelines for Limiting Exposure to Time-Varying Electric and Magnetic Fields (1Hz - 100 kHz), ICNIRP Guidelines, pp. 818-836, 2010

[22] Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (Up to 300 GHz), ICNIRP Guidelines, 1997

[23] F. Koshiji, N. Yuyama, and K. Koshiji, "Wireless body area communication using electromagnetic resonance coupling," Proceedings of CPMT Symposium Japan, pp. 1, 4, 10-12, 2012

[24] I. Laakso, S. Tsuchida, A. Hirata, and Y. Kamimura, “Evaluation of SAR in a human body model due to wireless power transmission in the 10 MHz band,” Proceedings of Phys. Med. Biol., pp. 4991-5002, 2012

[25] T.Z. Wong, J.W. Strohbehn, K.M. Jones, J.A Mechling, and B.S. Trembly, "SAR Patterns from an Interstitial Microwave Antenna-Array Hyperthermia System," Proceedings of IEEE Transactions on Microwave Theory and Techniques, pp. 560-567, 1986

[26] M.M. Elwassif, A. Datta, A. Rahman, and M. Bikson, “Temperature control at DBS electrodes using a heat sink: experimentally validated FEM model of DBS lead architecture,” U.S. National Library of Medicine National Institutes of Health Vol9. No.4, Aug 2012

[27] Y. Machida, T. Yamamoto, and K. Koshiji, “A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication,” Proceedings of 35th Annual International Conference of the IEEE, pp. 1883-1886, 2013

QR CODE