簡易檢索 / 詳目顯示

研究生: Kamau King'ora
Kamau - King'ora
論文名稱: 紊流中流引致振動之直接力量沉浸邊界模擬
Direct-forcing immersed boundary modeling of vortex-induced vibration in turbulent flow
指導教授: 陳明志
Ming-Jyh Chern
口試委員: 林怡均
Yi-Jiun Peter LIN
洪子倫
Tzyy-Leng Horng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 79
中文關鍵詞: 大渦紊流模擬直接力量沉浸邊界法渦旋引致振動鎖向放大共振
外文關鍵詞: Large eddy simulation (LES), Direct-forcing immersed boundary (DFIB), Vortex-induced vibration (VIV), Lock-in, Resonance
相關次數: 點閱:319下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用直接力量沈浸邊界與大渦法對於紊流中一低質量比、低阻尼比的圓柱體的渦引致振動來進行模擬計算。由於圓柱後方的渦漩交替逸出因此造成作用於圓柱的水動力隨時間而有所變化,進一步造成圓柱體隨時間的振動。而當振動頻率接近於圓柱體的自然頻率時,共振現象會產生,此時大振幅的圓柱運動會導致結構的疲勞及破壞。本研究針對此現象,考慮一能在流動的垂直方向運動的圓柱體,其在雷諾數為十萬以上時,衰減速度(reduced velocity)的改變對此種渦引致振動的影響。在結果中,2S與2T渦漩逸出模式分別在小振幅與大振幅的圓柱振動時被觀察到。而在衰減速度與振動振幅的變化關係中也可看到隨衰減速度由低到高,振幅由很小到產生鎖相放大(lock-in)振幅突然增大的共振現象,同時振動的時序圖也可看到因衰減速度變化而有週期性(periodic)與類週期性(quasi-periodic)的行為。同時本研究所提出的DFIB-LES模式其數值預測結果與已發表的實驗結果有良好之一致性,證明模式的正確性。本模式將對此類紊流中渦引致振動模擬分析有所助益。


    A numerical study of the vortex-induced vibration (VIV) of a flexibly supported circular cylinder with low mass ratio and damping is investigated in turbulent flow using the direct-forcing immersed boundary method and large eddy simulation (DFIB-LES). The fluctuating hydrodynamic forces may cause the solid structure in fluid to vibrate due to vortex shedding behind it. At resonance, high peak amplitude vibration may result to fatigue, yielding, buckling or other forms of failure in the structure. The present study considers a dynamically mounted rigid circular cylinder which is allowed to vibrate transversely in a uniform flow at Reynolds number $\mathcal{O}10^5$. The effect of reduced velocity on VIV is discussed. 2S and 2T vortex shedding modes are found corresponding to low amplitude vibration and high amplitude vibration respectively. The amplitude variation at low reduced velocity is gradual as oppose to the traditional jump from the initial to the upper branch. The upper branch is extended at the expense of the lower branch and the range of synchronisation is wider compared to low Reynolds number cases. The lift force increases rapidly in the initial excitation regime and a sharp peak is found at the beginning of the upper branch. In the upper branch region, the lift decreases rapidly and then gradually and remains almost constant in the desynchronization region. The displacement in low reduced velocity is found to be periodic and transits to quasi-periodic in the lock-in range. The maximum peak amplitude recorded in this study is 1.5 times the diameter of the cylinder. Comparison against the published experimental data proves the capability of the present DFIB-LES model. This proposed model can be useful to investigate the VIV phenomena of the solid structures interacting with flowing fluid.

    Chinese Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii 1 INTRODUCTION 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 MATHEMATICAL FORMULAE AND NUMERICAL MODEL 7 2.1 DFIB-LES model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.1 Governing equations for DFIB-LES . . . . . . . . . . . . . . . . . . 9 2.1.2 The virtual force treatment . . . . . . . . . . . . . . . . . . . . . . 10 2.1.3 Smagorinksy-Lilly SGS model . . . . . . . . . . . . . . . . . . . . . 11 2.1.4 Sub-grid turbulence Kinetic Energy . . . . . . . . . . . . . . . . . . 12 2.2 The equation of motion for a vibrating rigid body . . . . . . . . . . . . . . 13 2.3 Numerical solution for Navier-Stokes equations . . . . . . . . . . . . . . . . 14 2.3.1 Spatial and temporal discretizations . . . . . . . . . . . . . . . . . . 14 2.3.2 Prediction-correction for pressure-velocity . . . . . . . . . . . . . . 15 2.4 Procedures for fluid-structure interaction . . . . . . . . . . . . . . . . . . . 15 2.5 Computational details and computing time . . . . . . . . . . . . . . . . . . 16 2.5.1 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 RESULTS AND DISCUSSION 19 3.1 Validation of the numerical scheme . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 Power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.2 Flow visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.1.3 Recirculation length . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.4 Drag coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1.5 Strouhal number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 VIV of an elastically mounted rigid cylinder . . . . . . . . . . . . . . . . . 23 3.2.1 VIV of an elastically mounted rigid cylinder at Re = 30, 500 . . . . 24 3.2.2 VIV of an elastically mounted rigid cylinder at Re = 100, 000 . . . . 25 4 CONCLUSIONS AND FUTURE WORK 30 4.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

    Achenbach, E., 1968. Distribution of local pressure and skin friction around a circular cylinder in cross−flow up to Re = 5 × 106. Journal of Fluids Mechanics 34, 625–639.
    Al−Jamal, H., Dalton, C., 2004. Vortex induced vibrations using large eddy simulation at a moderate Reynolds number. Journal of Fluids and Structures 19, 73–92.
    Beaudan, P., Moin, P., 1994. Numerical experiments on the flow past a circular cylinder at subcritical Reynolds number. Report TF-62, Department of Mechanical Engineering, Stanford University, USA .
    Bernitsas, M.M., Ben−Simon, Y., Raghavan, K., Garcia, E.M.H., 2009. Vivace (vortex induced vibration aquatic clean energy): A new concept in generation of clean and renewable energy from fluid flow. Journal of Offshore Mechanics and Arctic Engineering 131, 041101.
    Bernitsas, M.M., Raghavan, K., Ben−Simon, Y., Garcia, E.M.H., 2008. The vivace
    converter: Model tests at high damping and Reynolds number around 105. Journal of Offshore Mechanics and Arctic Engineering 130, 011102.
    Blackburn, H.M., Govardhan, R.N., Williamson, C.H.K., 2000. A complementary numerical and physical investigation of vortex-induced vibration. Journal of Fluids and Structures 15, 481–488.
    Blackburn, H.M., Schmidt, S., 2001. Large eddy simulation of flow past a circular cylinder. Proceedings of Australasian Fluid Mechanics Conference, Adelaide, Australia.
    Brankovic, M., Bearman, P.W., 2006. Measurements of transverse forces on circular cylinders undergoing vortex-induced vibration. Journal of Fluids and Structures 22,829–836.
    Breuer, M., 1998. Large eddy simulation of the flow past a circular cylinder: Numerical and modelling aspects. International Journal for Numerical Methods in Fluids 28, 1281–1302.
    Breuer, M., 2000. A challenging test case for large eddy simulation: high reynolds number
    circular cylinder flow. International Journal of Heat and Fluid Flow 21, 648–654.
    Cantwell, B., Coles, D., 1983. An experimental study on entrainment and transport in the turbulent near wake of a circular cylinder. Journal of Fluid Mechanics 136, 321–374.
    Cardell, G.S., 1993. Flow Past a Circular Cylinder With a Permeable Splitter Plate. Ph.D. Thesis, California Institute of Technology. Pasadena, California.
    Chern, M.J., Hsu, W., Horng, T.L., 2012. Numerical prediction of hydrodynamic loading on circular cylinder array in oscillatory flow using direct-forcing immersed boundary method. Journal of Applied Mathematics , Article ID 505916.
    Dmitry, A.L., Ivar, S.E., Kjell, E.R., 2012. Large eddy simulation of the flow over a circular cylinder at Reynolds number 3900 using OpemFOAM toolbox. Journal of Flow, Turbulence and Combustion 89, 491–518.
    Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D., 2006. A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. Journal of Fluid Mechanics 569, 185–207.
    Druault, P., Lardeau, S., Bonnetl, J., Coiffet, F., Delville, J., Lamballais, E., Lardeau, J., Perret, L., 2004. Generation of three-dimensional turbulent inlet conditions for large-eddy simulation. AIAA 42, 447–456.
    Feng, C.C., 1968. The Measurement of Vortex Induced Effects in Flow Past Stationary and Oscillating Circular and D-Section Cylinders. Master Thesis, University of British Columbia, Vancouver, Canada.
    Ferziger, J.H., Peric, M., 2002. Computational Methods for Fluid Dynamics. 3rd ed.,Springer-Verlag, Berlin, Germany.
    Gharib, M.R., 1999. The Absence of Lock-in and the Role of Mass Ratio. Ph.D. Thesis,California Institute of Technology. Pasadena, California.
    Govardhan, R., Williamson, C.H.K., 2000. Modes of vortex formation and frequency
    response of a freely vibrating cylinder. Journal of Fluid Mechanics 420, 85–130.
    Griffin, O.M., Ramberg, S.E., 1982. Some recent studies of vortex shedding with application to marine tubulars and risers. Journal of Energy Resources Technology 104, 2–13.
    Hirt, C.W., Nichols, B.D., Romero, N.C., 1975. A numerical solution algorithm for transient fluid flows. Technical Report AD-A009953, Los Alamos Scientific Laboratory, USA .
    Hover, F.S., Davis, J.T., Triantafyllou, M.S., 2004. Three−dimensionality of mode transition in vortex−induced vibrations of a circular cylinder. European Journal of Mechanics B/Fluids 23, 29–40.
    Hover, F.S., Techet, A.H., Triantafyllou, M.S., 1998. Forces on oscillating uniform and tapered cylinders in crossflow. Journal of Fluid Mechanics 363, 97–114.
    Jauvtis, N., Williamson, C.H.K., 2003. Vortex−induced vibration of a cylinder with two degrees of freedom. Journal of Fluids and Structures 17, 1035–1042.
    Khalak, A., Williamson, C.H.K., 1996. Dynamics of a hydroelastic cylinder with very low mass and damping. Journal of Fluids and Structures 10, 455–472.
    Khalak, A., Williamson, C.H.K., 1997a. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. Journal of Fluids and Structures 11, 973–982.
    Khalak, A., Williamson, C.H.K., 1997b. Investigation of relative effects of mass and damping in vortex-induced vibration of a circular cylinder. Journal of Wind Engineering and Industrial Aerodynamics 69, 341–350.
    Khalak, A., Williamson, C.H.K., 1999. Motions, forces and mode transitions in vortexinduced vibrations at low mass-damping. Journal of Fluids and Structures 13, 813–851.
    Klein, M., Sadiki, A., Janicka, J., 2003. A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. Journal of Computational Physics 186, 652–665.
    Lee, S., Lele, S., Moin, P., 1992. Simulation of spatially evolving turbulence and the applicability of Taylor’s hypothesis in compressible flow. Physics of Fluids 4, 1521–1530.
    Leonard, B.P., 1979. A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Computer Methods in Applied Mechanics and Engineering 19, 59–98.
    Lourenco, L.M., Shih, C., 1993. Characteristics of the plane turbulent near wake of a circular cylinder; a particle image velocimetry study. Data taken from Beaudan and Moin (1994) . Moe, G., Wu, Z.J., 1990. The lift force on a cylinder vibrating in a current. Journal of Offshore Mechanics and Arctic Engineering 112, 297–303.
    Mohd. Yusof, N., 1996. Interaction of Massive Particles with Turbulence. Ph.D. Thesis, Cornell University. New York, USA.
    Noor, D.Z., Chern, M.J., Horng, T.L., 2009. An immersed boundary method to solve
    fluid-solid interaction problems. Computational Mechanics 44, 447–453.
    Norberg, C., 1987. Effects of Reynolds number and Low-intensity Free Stream Turbulence on the Flow Around a Circular Cylinder. Ph.D. Thesis, Chalmers University of Technology. Gothenburg, Sweden.
    Ong, L., Wallace, J., 1996. The velocity field of the turbulent very near wake of a circular cylinder. Experiments in Fluids 20, 441–453.
    Perret, L., Delville, J., Manceau, R., Bonnet, J., 2006. Generation of turbulent inflow conditions for large eddy simulation from stereoscopic piv measurements. International Journal of Heat and Fluid Flow 27, 576–584.
    Peskin, C., 1972. Flow patterns around heart valves: A numerical method. Journal of Computational Physics 10, 252–271.
    Raghavan, K., Bernitsas, M.M., 2011. Experimental investigation of Reynolds number effect on vortex induced vibration of rigid circular cylinder on elastic supports. Ocean Engineering 38, 719–731.
    Sagaut, P., 2006. Large Eddy Simulation for Incompressible Flows. 3rd ed.,
    Springer−Verlag, Berlin, Germany. Sarpkaya, T., 1995. Hydrodynamic damping, flow−induced oscillations, and biharmonic response. Journal of Offshore Mechanics and Arctic Engineering 117, 232–238.
    Sarpkaya, T., 2004. A critical review of the intrinsic nature of vortex−induced vibrations. Journal of Fluids and Structures 19, 389–447.
    Smagorinsky, J., 1963. General circulation experiments with the primitive equations. Monthly Weather Review 91, 99–164.
    Tabor, G.R., Baba−Ahmadi, M.H., 2010. Inlet conditions for large eddy simulation: A review. Computers & Fluids 39, 553–567.
    Tutar, M., Arne, E.H., 2000. Large eddy simulation of a smooth circular cylinder oscillating normal to a uniform flow. Journal of Fluids Engineering 122, 694–702.
    Versteeg, H.K., Malalasekera, W., 2007. An Introduction to Computational Fluid Dynamics. 2nd ed., Pearson Education Limited, U.K.
    Vikestad, K., Vandiver, J.K., Larsen, C.M., 2000. Added mass and oscillation frequency for a circular cylinder subjected to vortex-induced vibrations and external disturbance. Journal of Fluids and Structures 14, 1071–1088.
    Williamson, C.H.K., Govardhan, R., 2004. Vortex-induced vibrations. Annual Review of Fluid Mechanics 36, 413–455.
    Williamson, C.H.K., Jauvtis, N., 2004. A high−amplitude 2T mode of vortex−induced vibration for a light body in XY motion. European Journal of Mechanics B/Fluids 23,107–114.
    Williamson, C.H.K., Roshko, A., 1988. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures 2, 355–381.
    Zhang, J., Dalton, C., 1996. Interactions of vortex-induced vibrations of a circular cylinder and a steady approach flow at a Reynolds number of 13,000. Computers & Fluids 25,
    283–294.

    QR CODE