簡易檢索 / 詳目顯示

研究生: 吳槐桂
Huai-Kuei Wu
論文名稱: IEEE 802.15.4 無線個人區域網路中後退演算法與工作週期管理之研究
Study on Backoff Algorithm and Duty Cycle Management in IEEE 802.15.4 WPAN
指導教授: 黎碧煌
Bih-Hwang Lee
口試委員: 鄭瑞光
Ray-Guang Cheng
鍾添曜
none
楊英魁
Ying-Kuei Yang
陳明輝
none
吳傳嘉
Chwan-Chia Wu
余聲旺
none
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 75
中文關鍵詞: IEEE 802.15.4 無線個人區域網路中後退演算法與工作週期管理之研究
外文關鍵詞: Study on Backoff Algorithm and Duty Cycle Manage
相關次數: 點閱:260下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線感測網路(wireless sensor network; WSN) 是由大量的感測節點(sensor node)所組成的網路型態。為了滿足不同的應用需求,大部分的感測節點以電池為主要的能量來源。因此,在無線感測網路中,能量消耗成為了重要的研究議題。IEEE 802.15.4標準具備了低能量消耗及高運作彈性的特點,因此成為了無線感測網路的主要標準。
    IEEE 802.15.4標準可選擇性的使用超碼框架構(superframe structure)控制資料的傳輸並達成感測節點間的同步。在超碼框架構中,我們可藉由訊標級數(beacon order; BO)及超碼框級數(superframe order; SO)的調整以控制無線感測網路的工作週期。此外,超碼框架構中競爭存取週期(contention access period; CAP)使用時槽化的載波偵測多重存取/碰撞避免(carrier sense multiple access with collision avoidance; CSMA/CA)演算法進行資料的傳送。
    在競爭存取週期中,由於使用CSMA/CA演算法,隨機後退時間及資料間的碰撞將導致通道使用率的降低。為了提高競爭存取週期中的通道使用率,本論文針對IEEE 802.15.4的CSMA/CA演算進行研究,提出了延遲後退演算法(delayed backoff algorithm; DBA)。DBA可降低節點傳送資料前的後退時間(backoff time)並避免資料間的碰撞情形。透過模擬的方式與IEEE 802.15.4標準及其他已提出的方法比較,我們提出的演算法能提高有效資料傳送量(goodput)並降低能量消耗。
    此外,由於在IEEE 802.15.4標準中,超碼框架構的工作週期無法動態的依照網路的需求進行調整,因此當網路中的負載增加時,過低的工作週期將導致資料傳送的成功率降低並造成提高碰撞機率。為了解決上述問題,本論文提出了動態超碼框調整演算法(dynamic superframe adjustment algorithm; DSAA)。DSAA能依照網路的特徵,如超碼框使用比例及資料碰撞比例等,動態的調整超碼框級數。根據模擬的方式與其他已提出的方法比較,DSAA可有效的改善有效資料傳送量,傳輸延遲及能量消耗。


    Wireless sensor networks (WSNs) consist of a large number of sensor nodes. In order to satisfy the requirements of different applications, most sensor nodes use batteries as their main energy source. Thus, the energy consumption has been a very important issue with regard to WSNs. The IEEE 802.15.4 standard is a candidate standard for WSNs due to its low energy consumption and high flexibility. The IEEE 802.15.4 standard can optionally use the superframe structure to regulate packet transmission and achieve synchronization of sensor nodes. The duty cycle of the superframe may be adjusted by changing the value of the beacon order (BO) and superframe order (SO). The active period of the superframe is divided into the contention access period (CAP) and the contention free period (CFP), and the slotted carrier sense multiple access with collision avoidance (CSMA/CA) algorithm is used for the data transmission in the CAP. In the CAP, channel utilization is significantly affected by idle backoff time and collision due to the use of the CSMA/CA algorithm. In order to efficiently utilize the bandwidth, this thesis proposes a delayed backoff algorithm (DBA) in the CAP for the superframe structure. DBA improves the goodput and energy consumption by decreasing the backoff time between packets and assuring that the different nodes do not finish their backoffs simultaneously. Simulation results show that the proposed algorithm outperforms the slotted CSMA/CA algorithm and other schemes in terms of goodput and energy consumption.
    Furthermore, the duty cycle of the superframe structure cannot be dynamically adjusted according to the traffic load in the IEEE 802.15.4 standard. Thus, when the traffic load of the network is high, the insufficient active periods will decrease the transmission opportunities of devices and increase the collision probability.
    In order to solve the above problem, this thesis also presents the dynamic superframe adjustment algorithm (DSAA); it can dynamically adjust the duty cycle of the superframe according to certain features observed by the coordinator, such as the occupied proportion of the superframe and the collision ratio of devices. Thus, it can increase the transmission opportunities of devices and improve the performance of an entire network. The simulation results of goodput, delay and energy consumption show the improvement of the proposed DSAA.

    Abstract in Chinese v Abstract in English vii Acknowledgements ix Table of Contents vi List of Symbols viii List of Figures x List of Tables xiv Chapter 1 Introduction 1 1.1 Research Motivation 1 1.3 Organization of Thesis 5 Chapter 2 Background and Related Works 6 2.1 IEEE 802.15.4 Overview 6 2.1.1 Network Topologies 7 2.1.2 Superframe Structure 8 2.1.3 Data Transfer Model 9 2.1.4 The CSMA/CA Algorithm 14 2.1.5 MAC Frame Format 16 2.2 Related Works 19 Chapter 3 The Delayed Backoff Algorithm 22 3.1 Description of the DBA 22 3.1.1 The Backoff Period Assignment Stage 23 3.1.2 The Data Transfer Stage 25 3.2 An Example of Using DBA 27 3.3 Simulation and Results Analysis 28 Chapter 4 The Dynamic Superframe AdjustmentAlgorithm 37 4.1 System Description 38 4.2 The Process of the Coordinator 40 4.3 The Process of the Devices 42 4.4 Simulation and Results Analysis 44 Chapter 5 Conclusions and Future Works 62 References 63 Appendix A Abbreviations and Acronyms 74

    [1] I. F. Akyildiz, W. Su, Y. Sankarasubmmaiam, E. Cayirci, “A Survey on Sensor Networks,” IEEE Communications Magazine, pp. 102114, Aug. 2002.
    [2] Y. C. Chang, Z. S. Lin and J. L. Chen, “Cluster based self-organization management protocols for wireless sensor networks,” IEEE Transactions on Consumer Electronics, vol. 52, issue 1, pp. 7580, Feb. 2006.
    [3] P. P. Czapski, “A Survey: MAC Protocols For Applications Of Wireless Sensor Networks,” in Proceeding of IEEE Region 10 Conference, pp. 14, Nov. 2006.
    [4] E. Fasolo, M. Rossi, J. Widmer and M. Zorzi, “In-network aggregation techniques for wireless sensor networks: a survey,” IEEE Wireless Communications, vol. 14, issue 2, pp. 7087, Apr. 2007.
    [5] W. B. Heinzelman, A. P. Chandrakasan, H. Balakrishnan, “An application-specific protocol architecture for wireless microsensor networks,” IEEE Transactions on Wireless Communications, vol. 1, issue 4, pp. 660670, Oct. 2002.
    [6] S. Mahmud, S. Khan, H. Al-Raweshidy and K. Sivarajah, “Meshed high data rate personal area networks,” IEEE Communications Surveys & Tutorials, vol. 10, issue 1, pp. 5869, 2008.
    [7] Y. Mengjie, H. Mokhtar and M. Merabti, “Fault management in wireless sensor networks,” IEEE Wireless Communications, vol. 14, issue 6, pp. 1319, Dec. 2007.
    [8] G. Teng, K. Zheng and W. Dong, “A Survey of Available Tools for Developing Wireless Sensor Networks,” in Proceeding of International Conference on Systems and Networks Communications’08, pp. 139144, Oct. 2008.
    [9] O. Younis, S. Fahmy, ”HEED: a hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks,” IEEE Transactions on Mobile Computing, vol. 3, issue 4, pp. 366379, Oct. Dec. 2004.
    [10] T. Ahonen, R. Virrankoski and M. Elmusrati, “Greenhouse Monitoring with Wireless Sensor Network,” in proceeding of IEEE/ASME International Conference on Mechtronic, Embedded Systems and Applications, pp. 403408, Oct. 2008.
    [11] F. Ciancetta, B. D'Apice, D. Gallo and C. Landi, “Plug-n-Play Smart Sensor Network With Dynamic Web Service,” IEEE Transactions on Instrumentation and Measurement, vol. 57, issue 10, pp. 21362145, Oct. 2008.
    [12] Available at http://www.dust-inc.com/
    [13] M. W. Feng, “Wireless Sensor Network Industrial View? What Will Be the Killer Apps for Wireless Sensor Network?,” in proceeding of Sensor Networks, Ubiquitous and Trustworthy Computing, pp. 270270, June 2008.
    [14] J. A. Gutierrez, D. B. Durocher, B. Lu and T. G. Habetler, “Applying Wireless Sensor Networks in Industrial Plant Energy Evaluation and Planning Systems,” in proceeding of Pulp and Paper Industry Technical Conference, pp. 17, June 2006.
    [15] R. J. Nemzek, J. S. Dreicer, D. C. Torney and T. T. Warnock, “Distributed sensor networks for detection of mobile radioactive sources,” IEEE Transactions on Nuclear Science, vol. 51, issue 4, pp. 16931700, Aug. 2004.
    [16] S. Petersen, P. Doyle, S. Vatland, C. S. Aasland, T. M. Andersen and Dag Sjong, “Requirements, drivers and analysis of wireless sensor network solutions for the Oil & Gas industry,” in proceeding of IEEE Conference on Emerging Technologies and Factory Automation, pp. 219226, Sept. 2007.
    [17] Y. Wan, L. Li, J. He, X. Zhang and Q. Wang, “Anshan: Wireless Sensor Networks for Equipment Fault Diagnosis in the Process Industry,” in proceeding of IEEE International Conference on Sensor, Mesh and Ad Hoc Communications and Networks, pp. 314332, June 2008.
    [18] K. Zhang, Y. Li, W. H. XIiao and H. Suh, “The Application of a Wireless Sensor Network Design Based on ZigBee in Petrochemical Industry Field,” in proceeding of Intelligent Networks and Intelligent Systems, 2008. ICINIS '08, pp. 284287, Nov. 2008.
    [19] L. Q. Zhuang, K. M. Goh, and J. B. Zhang, “The wireless sensor networks for factory automation : Issue and challenges,” in Proceeding of Emerging Technologies & Factory Automation’07, pp. 141148, Sept. 2007.
    [20] H. Bai, M. Atiquzzaman, and D. Lilja, “Wireless Sensor Network for Aircraft Health Monitoring,” in Proceeding of Broadband Networks’04, pp. 748750, Oct. 2004.
    [21] S. M. Diamond and M. G. Ceruti, “Application of Wireless Sensor Network to Military Information Integration,” in proceeding of Industrial Informatics, vol. 1, pp. 317322, June 2007.
    [22] S. H. Choi, B. K. Kim, J. Park, C. H. Kang and D. S. Eom, “An implementation of wireless sensor network,” IEEE Transactions on Consumer Electronics, vol. 50, no. 1, pp. 236244, Feb. 2004.
    [23] R. A. Leon, V. Vittal, G. Manimaran, “Application of Sensor Network for Secure Electric Energy Infrastructure,” IEEE Transactions on Power Delivery, vol. 22, issue 2, pp. 10211028, Apr. 2007.
    [24] D. R. Raymond, R. C. Marchany, M. I. Brownfield and S. F. Midkiff, “Effects of Denial-of-Sleep Attacks on Wireless Sensor Network MAC Protocols,” IEEE Transactions on Vehicular Technology, vol. 58, issue 1, pp. 367380, Jan. 2009 Page(s):367 - 380
    [25] P. Traynor, R. Kumar, H. Choi, G. Cao, S. Zhu and T. La Porta, “Efficient Hybrid Security Mechanisms for Heterogeneous Sensor Networks,” IEEE Transactions on Mobile Computing, vol. 6, issue 6, pp. 663677, June 2007.
    [26] Z. Yanchao, L. Wei, L. Wenjing and F. Yuguang, “Location-based compromise-tolerant security mechanisms for wireless sensor networks,” IEEE Journal on Selected Areas in Communications, vol. 24, issue 2, pp. 247260, Feb. 2006.
    [27] K. Yao, “Sensor networks: Motivations, implementations and applications,” in proceeding of international Conference on Communications, Circuits and Systems, p. 15, May 2008.
    [28] J. A. Guierrez, “On the use of IEEE 802.15.4 to enable wireless sensor networks in building automation,” in Proceeding of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 3, pp. 18691869, Sept. 2004.
    [29] A. M. C. Lee, C. T. Angeles, M. C. R. Talampas, L. G. Sison and M. N. Soriano, “MotesArt: Wireless Sensor Network for Monitoring Relative Humidity and Temperature in an Art Gallery,” in proceeding of IEEE International Conference on Networking, Sensing and Control, pp. 12631268, Apr. 2008.
    [30] M. Lin, Y. Wu, I. Wassell, “Wireless sensor network: Water distribution monitoring system,” in proceeding of IEEE Radio and Wireless Symposium, pp. 775778, Jan. 2008.
    [31] K. H. Low, W. K. Leow, and M. H. Ang, “Autonomic mobile sensor network with self-coordinated task allocation and execution,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 36, issue 3, pp. 315327, May 2006.
    [32] W. K. Park, I. Han, K. R. Park, “ZigBee based Dynamic Control Scheme for Multiple Legacy IR Controllable Digital Consumer Devices,” IEEE Transactions on Consumer Electronics, vol. 53, issue 1, pp. 172177, Feb. 2007.
    [33] S. D. Bao, C. C. Y. Poon, Y. T. Zhang and L. F. Shen, “Using the Timing Information of Heartbeats as an Entity Identifier to Secure Body Sensor Network,” IEEE Transactions on Information Technology in Biomedicine, vol. 12, issue 6, pp. 772779, Nov. 2008.
    [34] C. Cordeiro, R. Fantacci, S. Gupta, J. Paradiso, A. Smailagic and M. Srivastava, “Body Area Networking: Technology and Applications,” IEEE Journal on Selected Areas in Communications, vol. 27, no. 1, pp. 14, Jan. 2009.
    [35] I. Martinez, J. Fernandez, M. Galarraga, L. Serrano, P. de Toledo, S. Jimenez-Fernandez, S. Led, M. Martfnez-Espronceda and J. Garcia, “Implementation of an end-to-end standard-based patient monitoring solution,” IET Communications, vol. 2, no. 2, pp. 181191, Feb. 2008.
    [36] E. Monton, J. F. Hernandez, J. M. Blasco, T. Herve, J. Micallef, I. Grech, A. Brincat and V. Traver, “Body area network for wireless patient monitoring,” IET Communications, vol. 2, issue 2, pp. 215222, Feb. 2008.
    [37] P. A. Morreale, “Wireless Sensor Network Applications in Urban Telehealth,” in Proceeding of 21st International Conference on Advanced Information Networking and Applications Workshops, vol. 2, pp. 810814, May 2007.
    [38] O. Omeni, A. Wong, A. J. Burdett and C. Toumazou, ”Energy Efficient Medium Access Protocol for Wireless Medical Body Area Sensor Networks,” IEEE Transactions on Biomedical Circuits and Systems, vol. 2, issue 4, pp. 251259, Dec. 2008.
    [39] L. Schwiebert, S. K. S. Gupta, and J. Weinmann, “Research challenges in wireless networks of biomedical sensors,” in Proceeding of 7th annual international conference on Mobile computing and networking, pp. 151165, 2001.
    [40] J. Yin, Q. Yang, J. J. Pan, “Sensor-Based Abnormal Human-Activity Detection,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, issue 8, pp. 10821090, Aug. 2008.
    [41] C. L. Yau, and W. Y. Chung, “IEEE 802.15.4 Wireless Mobile Application for Healthcare System,” in Proceeding of Convergence Information Technology’07, pp. 14331438, Nov. 2007.
    [42] R. Holman, J. Stanley and T. Ozkan-Haller, “Applying video sensor networks to nearshore environment monitoring,” IEEE Pervasive Computing, vol. 2, no. 4, pp. 1421, Oct. Dec. 2003.
    [43] T. T. Hsieh, “Using sensor networks for highway and traffic applications,” IEEE Potentials, vol. 23, issue 2, pp. 1316, Apr.May 2004.
    [44] Y. K. Kim, R. G. Evans, W. M. Iversen, “Remote Sensing and Control of an Irrigation System Using a Distributed Wireless Sensor Network,” IEEE Transactions on Instrumentation and Measurement, vol. 57, issue 7, pp. 13791387, July 2008.
    [45] W. Lin, D. Li, Y. Tan, J. Chen, T. Sun, “Architecture of Underwater Acoustic Sensor Networks: A Survey,” in Proceeding of first International Workshop on Intelligent Networks and Intelligent Systems, pp. 155159, Nov. 2008.
    [46] A. M. Mahdy, “Marine Wireless Sensor Networks: Challenges and Applications, in proceeding of Networking’08, pp. 530535, Apr. 2008.
    [47] D. Steere, A. Baptista, and D. McNamee, C. Pu, J. Walpole, “Research challenges in environmental observation and forecasting systems,” in Proceeding of ACM/IEEE 6th annual international conference on Mobile computing and networking, Boston, pp. 292299, Aug. 2000.
    [48] Market Intelligence Center, “Emerging Wireless Sensor Network Applications,” Topical Report, Oct. 28, 2008.
    [49] Available at http://www.thisisant.com/.
    [50] M. Knight, “Wireless security - How safe is Z-wave?,” Computing & Control Engineering Journal, vol. 17, issue 6, pp. 1823, Dec.Jan. 2006.
    [51] Available at http://www.z-wave.com/.
    [52] Available at http://www.z-wavealliance.org/.
    [53] G. Csernath, L. Szilagyi, G. Fordos and S. M. Szilagyi, “A novel ECG telemetry and monitoring system based on Z-Wave communication,” in proceeding of Engineering in Medicine and Biology Society’08, pp. 23612364, Aug. 2008.
    [54] Bluetooth SIG, “Bluetooth Core Specification v2.1 + EDR,” available at http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/, July 2007.
    [55] Bluetooth SIG, “Bluetooth Profile Specifications,” available at http://www.bluetooth.com/Bluetooth/Technology/Building/Specifications/
    [56] IEEE 802.15 WPAN Task Group, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs),” IEEE Std 802.15.1, June 2005.
    [57] IEEE 802.15 WPAN Task Group, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” IEEE Std 802.15.4, Oct. 2003.
    [58] IEEE 802.15 WPAN Task Group, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs),” IEEE Std 802.15.4, Sept. 2006.
    [59] IEEE 802.15 WPAN Task Group, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)-Amendment 1: Add Alternate PHYs,” IEEE Std 802.15.4a, Aug. 2007.
    [60] L. Angrisani, M. Bertocco, D. Fortin, A. Sona, “Experimental Study of Coexistence Issues Between IEEE 802.11b and IEEE 802.15.4 Wireless Networks,” IEEE Transactions on Instrumentation and Measurement, vol. 57, issue 8, pp. 15141523, Aug. 2008.
    [61] M. Bertocco, G. Gamba, A. Sona and S. Vitturi, ”Experimental Characterization of Wireless Sensor Networks for Industrial Applications,” IEEE Transactions on Instrumentation and Measurement, vol. 57, issue 8, pp. 15371546, Aug. 2008.
    [62] G. Ding, Z. Sahinoglu, P. Orlik, Zhang Jinyun, B. Bhargava, “Tree-Based Data Broadcast in IEEE 802.15.4 and ZigBee Networks,” IEEE Transactions on Mobile Computing, vol. 5, issue 11, pp. 15611574, Nov. 2006.
    [63] Y. K. Huang, A. C. Pang, H. N. Hung, “An Adaptive GTS Allocation Scheme for IEEE 802.15.4,” IEEE Transactions on Parallel and Distributed Systems, vol. 19, issue 5, pp. 641651, May 2008.
    [64] J. S. Lee, “Performance evaluation of IEEE 802.15.4 for low-rate wireless personal area networks,” IEEE Transactions on Consumer Electronics, vol. 52, issue 3, Aug. 2006.
    [65] G. Lu, B. Krishnamachari and C. S. Raghavendra, “Performance evaluation of the IEEE 802.15.4 MAC for low-rate low-power wireless Networks,” in Proceeding of IEEE International Conference on Performance, Computing, and Communications, pp.701706, Apr. 2004.
    [66] J. Ma, M. Gao, Q. Zhang and L. M. Ni, ”Energy-Efficient Localized Topology Control Algorithms in IEEE 802.15.4-Based Sensor Networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, issue 5, pp. 711720, May 2007.
    [67] L. D. Nardis and M-G. D. Benedetto, “Overview of the IEEE 802.15.4/4a standards for low data rate Wireless Personal Data Networks,” in Proceeding of 4th Workshop on Positioning, Navigation and Communication, pp. 285289, Mar. 2007.
    [68] C. K. Singh, A. Kumar, P. M. Ameer, “Performance evaluation of an IEEE 802.15.4 sensor network with a star topology,” Wireless Networks, vol. 14, issue 4, pp. 543568, Aug. 2008.
    [69] L. Tang, K. C. Wang, Y. Huang and F. Gu, ”Channel Characterization and Link Quality Assessment of IEEE 802.15.4-Compliant Radio for Factory Environments,” IEEE Transactions on Industrial Informatics, vol. 3, issue 2, pp. 99110, May 2007.
    [70] L. C. Ko and Z. T. Chou, “A Novel Multi-Beacon Superframe Structure with Greedy GTS Allocation for IEEE 802.15.4 Wireless PANs,” in Proceeding of IEEE Wireless Communications and Networking Conference, pp. 23282333, Mar. 2007.
    [71] Y. Kwon, Y. Fang and H. Latchman, “Design of MAC protocols with fast collision resolution for wireless local area networks,” IEEE Transactions on Wireless Communications, vol. 3, pp. 793807, May 2004.
    [72] N. O. Song, B. J. Kwak, J. Song and E. Miller Leonard, “Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm,” in Proceeding of IEEE Vehicular Technology Conference, vol. 3, pp. 27752778, Apr. 2003.
    [73] J. G. Ko; Y. H. Cho and H. Kim, “Performance Evaluation of IEEE 802.15.4 MAC with Different Backoff Ranges in Wireless Sensor Networks,” in Proceeding of IEEE International Conference on Communication Systems, pp. 15, Nov. 2006.
    [74] J. Deng , P. K. Varshney, and Z. J. Haas, "A New Backoff Algorithm for the IEEE 802.11 Distributed Coordination Function," in Proceeding of Communication Networks and Distributed Systems Modeling and Simulation, pp. 215225, Jan. 1821, 2004.
    [75] A. C. Pang and H. W. Tseng, “Dynamic backoff for wireless personal networks,” in Proceeding of IEEE Global Telecommunications Conference, vol. 3, pp. 15801584, Nov. 2004.
    [76] IEEE, “IEEE Standard for Information Technology - Telecommunications and Information Exchange between Systems - Specific RequirementsPart 11: Wireless LAN MAC and PHY Specifications,” IEEE Std. 802.112007, 2007.
    [77] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE Journal on Selected Areas in Communication, vol. 18, no. 3, pp. 535547, Mar. 2000.
    [78] K. A. Meerja and A. Shami, “Analysis of New Distributed-Media Access-Control Schemes for IEEE 802.11 Wireless Local-Area Networks,” IEEE Transactions on Vehicular Technology, vol. 56, issue 4, pp. 17971812, July 2007.
    [79] B. H. Lee and H. K. Wu, "Study on Backoff Algorithm for IEEE 802.15.4 LR-WPAN," in Proceeding of 22nd International Conference on Advanced Information Networking and Applications, pp. 403409, Mar. 2008.
    [80] B. H. Lee and H. K. Wu , "A delayed backoff algorithm for IEEE 802.15.4 beacon-enabled LR-WPAN," in Proceeding of 6th International Conference on Information, Communications & Signal Processing, pp. 14, Dec. 2007.
    [81] B. H. Lee and H. K. Wu, "Study on A Delayed Backoff Algorithm for IEEE 802.15.4 LR-WPAN," IET Communications, Accepted.
    [82] J. Jeon, J. W. Lee, J. Y. Ha, and W. H. Kwon, “DCA: Duty-Cycle Adaptation Algorithm for IEEE 802.15.4 Beacon-Enabled Networks,” in Proceeding of 65th Vehicular Technology Conference, pp. 110113, Apr. 2007.
    [83] S. T. Sheu, Y. Y. Shih, and L. W. Chen, “An Adaptive Interleaving Access Scheme (IAS) for IEEE 802.15.4 WPANs,” in Proceeding of 61st Vehicular Technology Conference, pp. 15231527, June 2005.
    [84] J. Lee, J. Y. Ha, J. Jeon, D. S. Kim, and W. H. Kwon, ”ECAP: A Bursty Traffic Adaptation Algorithm for IEEE 802.15.4 Beacon-Enable Networks,” in Proceeding of 65th Vehicular Technology Conference, pp. 203207, Apr. 2007.
    [85] H. S. Kim, J. H. Song and S. Lee, “Energy-Efficient Traffic Scheduling in IEEE 802.15.4 for Home Automation Networks,” IEEE Transactions on Consumer Electronics, vol. 53, issue 2, pp. 369374, May 2007.
    [86] L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels: Part I - Carrier Sense Multiple-Access modes and their throughput-delay characteristics,” IEEE Transactions on Communications, vol. 23, no. 12, pp. 14001416, 1975.
    [87] T. J. Lee, H. R. Lee and M. Y. Chung, “MAC Throughput Limit Analysis of Slotted CSMA/CA in IEEE 802.15.4 WPAN,” IEEE Communication Letters, vol. 10, no. 7, pp. 561563, July 2006.
    [88] X. H. Ling, Y. Cheng, J. W. Mark and X. Shen, “A Renewal Theory Based Analytical Model for the Contention Access Period of IEEE 802.15.4 MAC,” IEEE Transactions on Wireless Communications, vol. 7, issue 6, pp. 23402349, June 2008.
    [89] J. Misic, S. Shafi and V. B. Misic, “Maintaining reliability through activity management in an 802.15.4 sensor cluster,” IEEE Transactions on Vehicular Technology, vol. 55, issue 3, pp. 779788, May 2006.
    [90] J. Misic, S. Shafi and V. B. Misic, “Performance of a beacon enabled IEEE 802.15.4 cluster with downlink and uplink traffic,” IEEE Transactions on Parallel and Distributed Systems, vol. 17, issue 4, pp. 361376, Apr. 2006.
    [91] S. Pollin, M. Ergen, S. Ergen, B. Bougard, L. Der Perre, I. Moerman, A. Bahai, P. Varaiya and F. Catthoor, ”Performance Analysis of Slotted Carrier Sense IEEE 802.15.4 Medium Access Layer,” IEEE Transactions on Wireless Communications, vol. 7, issue 9, pp. 33593371, Sept. 2008.
    [92] I. Ramachandran, A. K. Das and S. Roy, “Analysis of the contention access period of IEEE 802.15.4 MAC,” ACM Transactions on Sensor Networks, vol. 3, issue 1, pp. 129, Mar. 2007.
    [93] F. Tobagi and L. Kleinrock, “Packet Switching in Radio Channels: Part II--The Hidden Terminal Problem in Carrier Sense Multiple-Access and the Busy-Tone Solution,” IEEE Transactions on Communications, vol. 23, no. 12, pp. 14171433, Dec. 1975.
    [94] H. Zhai; Y. Fang , “A Solution to Hidden Terminal Problem Over a Single Channel in Wireless Ad-Hoc Networks,” in Proceeding of Military Communications Conference, pp. 17, Oct. 2006.
    [95] H. Zhai, J. Wang, X. Chen, and Y Fang, “Medium access control in mobile ad hoc networks: Challenges and solutions,” Wireless Communications and Mobile Computing, vol. 6, no. 2, pp. 151170, Mar. 2006.
    [96] Y. C. Tseng, S. Y. Ni, Y. S. Chen and J. P. Sheu, “The Broadcast Storm Problem in a Mobile Ad hoc Network,” ACM Wireless Networks, vol. 8, no. 2, pp. 153167, Mar. 2002.
    [97] A. Tsertou and David I. Laurenson, ”Revisiting the Hidden Terminal Problem in a CSMA/CA Wireless Network,” IEEE Transactions on Mobile Computing, vol. 7, issue 7, pp. 817831, July 2008.

    QR CODE