簡易檢索 / 詳目顯示

研究生: 夏懋原
Mao-yuan Hsia
論文名稱: 以微波加熱快速交聯之PVP應用於有機薄膜電晶體之閘極絕緣層之研究
Investigation on Using PVP Cross-linked Rapidly by Microwave Heating as Gate Insulator of Organic Thin-Film Transistors
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 王錫九
Shea-Jue Wang
李志堅
Chih-Chien Lee
顏文正
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 有機薄膜電晶體
外文關鍵詞: Organic thin film transitor
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要探討利用微波加熱金屬,快速交聯其上方聚乙烯苯酚(PVP)閘極絕緣層之方法。首先,我們先在常壓下使用高瓦數微波方式交聯聚乙烯苯酚,發現可以做出有特性之元件。因此,我們發現微波應用在交聯聚乙烯苯酚製作有機薄膜電晶體的閘極絕緣層有很大的潛力。接著我們對微波壓力變化的影響做研究,結果降低壓力後微波效果較好。之後我們嘗試變化微波的功率及微波的時間來交聯PVP,發現以高瓦數微波交聯所做出的元件特性不好,且長時間的微波相較短時間微波的元件特性為差。經過FTIR及AFM等分析,發現在高瓦數及長時間的微波處理後PVP表面變得十分粗糙,推測是給予的微波能量過強,溫度太高超過PVP所能負荷所致。最後我們得到在壓力為2x10-2 torr、功率50 W、微波5分鐘為最佳的微波交聯PVP參數,並以此參數所做成的元件和傳統使用烤箱交聯PVP所做出之元件比較,結果顯示兩種交聯方法所做出之元件特性相當,而使用微波卻大大節省交聯所需時間,僅需烤箱的1/18,為使用微波之最大優勢。


This study focuses on the use of microwave heating of metal to rapidly cross-link Poly-4-vinylphenol (PVP). First, we cross-link PVP to form the gate insulator of OTFT by using high power microwave at atmospheric pressure; the OTFT can have general electrical characteristic. Hence, the microwave has potential to be applied to cross-link PVP to form the gate insulator of OTFT. Furthermore, we systematically optimized the parameters such as chamber pressure, microwave power, and heating time of microwave to fabricate the gate insulator with good electrical performance. We found that the OTFT has great electrical characteristics as we reduce chamber pressure; on the contrary, the OTFT has bad electrical characteristics as we raise either microwave power or heating time. Finally, we got that the optimized parameters were such as chamber pressure of 2x10-2 torr, microwave power of 50 W, and heating time of 5 min to fabricate the OTFT whose performance is comparable with that of OTFT using the PVP insulator baked by conventional oven for 90 min. Therefore, fabricating the PVP gate insulator of OTFT using microwave has the advantage of saving process time; it only requires one eighteenth of that using conventional oven.

論文摘要 誌謝 第一章 緒論 1.1研究背景 1.1.1有機薄膜電晶體 1.1.2 微波與傳統退火 1.2 研究動機與方向 1.3 論文大綱 第二章 有機薄膜電晶體介紹 2.1 有機半導體介紹 2.1.1 有機半導體材料概論 2.2 有機半導體傳輸機制 2.2.1 載子跳躍模型機制 (Hopping Model) 2.2.3 偏極子模型機制 (The polaron model) 2.2.4 陷阱補捉與熱釋放模型機制 (Multiple Trapping and Release Model ,MTR) 2.3 有機絕緣層介紹 2.4 有機薄膜電晶體結構 2.5 有機薄膜電晶體操作模式 2.6 參數萃取方式 2.6.1 載子移動率(Mobility, μ) 2.6.2 臨界電壓(Threshold Voltage, Vth) 2.6.3 次臨界斜率(Subthreshold Swing) 2.6.4 開關電流比(On/Off CurrentRatio, ION/IOff) 第三章 有機薄膜電晶體製程方法及分析儀器 3.1有機薄膜電晶體之製作流程 3.3.1基板(Substrate) 3.1.2 閘極(Gate) 3.2聚乙烯苯酚(PVP)閘極絕緣層(Gate Insulator Layer) 3.2.1 聚乙烯苯酚(PVP)之製備與塗佈 3.2.2聚乙烯苯酚(PVP)之交聯21 3.3 五環素(Pentacene)主動層(Active Layer) 3.3.1五環素(Pentacene)之製作 3.4 源極/汲極(Source/Drain) 3.4.1源極/汲極之製作 3.5 分析設備介紹21 3.5.1半導體參數分析儀(Semiconductor Parameter Analyzer) 3.5.2傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer,FTIR) 3.5.3原子力顯微鏡(Atomic Force Microscope,AFM) 第四章 微波加熱原理討論與實驗結果...... 4.1微波交聯PVP閘極絕緣層 4.1.1 微波金屬加熱原理 4.1.2在不同基板微波交聯的PVP 4.2不同壓力下微波交聯PVP閘極絕緣層的影響 4.2.1 簡介 4.2.2實驗參數 4.2.3實驗結果與分析 4.3不同微波功率交聯PVP閘極絕緣層的影響 4.3.1 簡介 4.3.2實驗參數 4.3.3實驗結果與分析 4.4不同微波時間交聯PVP閘極絕緣層的影響 4.4.1 簡介 4.4.2實驗參數 4.4.3實驗結果與分析 第五章 結論與未來展望 5.1 結論 5.2未來工作與展望

[1]T. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, R. H. Friend, “Inkjet Printing of Polymer Thin Film Transistors”, Thin-Solid films, 438, 279 (2003)

[2]Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, ” Additive, Nanoscale Patterning of Metal Films with a Stamp and a Surface Chemistry Mediated Transfer Process: Applications in plasticelectronics”, Appl. Phys. Lett. 81, 562 (2002)

[3]R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner, “Electrode Specific Electropolymerization of Ethylenedioxythiophene: Injection Enhancement in Organic Transistors”, Appl. Phys. Lett. 87, 113501 (2005)

[4]K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, and J. Kasahara, “A High-Performance Short-Channel Bottom-Contact OTFT and Its Application to AM-TN-LCD”, IEEE T. Electron Dev. 52, 1519 (2005)

[5]L. Zhou, S. Park, B. Bai, J. Sun, S. C. Wu, T. N. Jackson, S. Nelson, D. Freeman, and Y. Hong, “Pentacene TFT Driven AM OLED Displays”, IEEE Electron Device Letter. 26, 640 (2005)

[6]V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman”, Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”, 44Proceeding Of The IEEE, 93, 1330 (2005)

[7]Z. Zheng-Tao, Jeffery T. Mason, Rudiger Dieckmann, and George G. Malliaras, “Humidity Sensors Based on Pentacene Thin-Film Transistors”, Appl. Phys. Lett. 1,
4643 (2002)

[8]R. Roy, D. Agrawal, J. Cheng, and S. Gedevanishvili, “Full sintering of powdered-metal bodies in a microwave field”, Nature Vol. 399, pp, 668-670 (1999)

[9]J. CHENG, R. ROY, D. AGRAWAL, “Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites”, J. Mater. Sci. Lett. Vol. 20, No. 17, pp, 1561-1563 (2001)

[10]R. Higuchi, H, Takashima, H, Kato, and Y. Kanno, “Thermal analysis of joule heat generated on metal thin film by microwave irradiation”, IEEE Int. Conf. Syst.,PP.1408-1412 (2006)

[11]A.Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, Vol. 49, pp. 1210 (1986).

[12]A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53, pp. 195 (1988).

[13]J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).

[14]Z. Bao, A. Dodabalapur, and A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, pp. 4108 (1996).

[15]H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741-1744 (1998).

[16]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, Vol. 54, pp. 3255 (1983).

[17]J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors ,” Nature, Vol. 335, pp. 137-141 (1988).

[18]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).

[19]J. H. Schon, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).

[20]Y.-Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606 (1997).

[21]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, pp. 2501 (1996).

[22]Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, pp. 80 (1996).

[23]G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated-oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, pp. 419-424 (1992).

[24]R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin film transistors,” Applied Physics Letters, Vol. 67, pp. 121, (1995).

[25]J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512-515, (1993).

[26]A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, pp. 257 (1994).

[27]J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332 (1996).

[28]G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503 (1990).

[29]Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207 (1998).

[30]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).

[31]N. F. Mott, “On the transition to metallic conduction in semiconductors,” Canadian Journal of Physics. Vol. 34, pp. 1356 (1956).

[32]S. Locci, “Modeling of physical and electrical characteristics of organic thin film transistors,” Ph.D dissertation, University of Cagliari, (2009).

[33]E. M. Conwell, “Impurity band conduction in germanium and silicon,” Physical Review Letters, Vol. 103, pp. 51-61 (1956).

[34]倪偵翔,「可溶性有機薄膜電晶體材料之開發」,碩士論文,國立中央大學,桃園 (2006).

[35]D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface,” Applied Physics Letters, Vol. 92, pp. 093309 (2008).

[36]Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, pp. 271-275 (2006).

[37]Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, Vol. 80, pp. 151 (2002).

[38]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High-Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, pp.1060-1064 (2001).
[39]G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, (2004).

[40]S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, CH. 7, (1981)

[41]D. William, JR. Callister, “Fundamentals of Materials Science and
Engineering”, John Wiley and Sons, NY, pp.128-129 (2002)

[42]S. MOTOTANI, S. OCHIAI, X. WANG, et al. “Performance of organic field-effect transistors with poly(3-hexylthiophene)as the semiconductor layer and poly(4-vinylphenol) thin film untreatedand treated by hexamethyldisilazane as the gate insulator”, Jpn. J. Appl. Phys. Vol. 47, No. 1, pp. 496–500 (2008)

[43]M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S.Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol.10, pp.234-238 (1998).

[44]A. V. Sarode, A. C. Kumbharkhane, “Dielectric relaxation and thermodynamic properties of polyvinylpyrrolidone using time domain reflectometry”, Polymer International Vol. 61, No. 4, pp. 609-615 (2012)

[45]C. J. Chiu, Z. W. Pei, S. P. Chang, and S. J. Chang , “Influence of Weight Ratio of Poly(4-vinylphenol) Insulator on Electronic Properties of InGaZnO Thin-Film Transistor”, Journal of Nanomaterials Vol. 2012, No. 698123, 7 pages1-7 (2012)

[46] C. J. Chiu, S.P. Chang, S. J. Chang, “High-performance amorphous indium–gallium–zinc oxide thin-film transistors with polymer gate dielectric” Thin Solid Films, Vol. 520, pp. 5455–5458 (2012)

無法下載圖示 全文公開日期 2019/07/18 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE