簡易檢索 / 詳目顯示

研究生: Mimi Mereditha Tjiotijono
Mimi Mereditha Tjiotijono
論文名稱: On Modeling Massive Machine Type Communications Traffic with Spatial Point Event
On Modeling Massive Machine Type Communications Traffic with Spatial Point Event
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 張世豪
Shih-Hao Chang
沈上翔
Shan-Hsiang Shen
黃琴雅
Chin-Ya Huang
鄭欣明
Shin-Ming Cheng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 42
中文關鍵詞: mMTCTraffic ModelingSpatial Point Event5GPPP
外文關鍵詞: mMTC, Traffic Modeling, Spatial Point Event, 5G, PPP
相關次數: 點閱:250下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Machine-type communication (MTC) has the essential role for supporting
    in connecting the huge number of devices in the 5G systems, which is predicted
    to be officially released in 2020. Massive MTC (mMTC) is the key
    to solve a large number of devices as its low-cost energy consumption and
    wide area coverage. Enabling the massive number of machine-type devices(
    MTDs) to request services to the base stations (BSs) resulted in the
    randomness of the random access mechanism. The position of MTDs, BSs,
    and the events are modeled in Spatial Poisson Point Process (SPPP), as the
    arrival of the events is based on the Poisson Arrival Process. Stochastic geometry
    is used to capture the characterization of the mMTC over cellular
    and events with enhanced access-barring class and random access through
    the PPP. Then, we proposed the event-based traffic model by combining
    the spatial point process and the poisson arrival process as the event model
    (Spatial Point Event) with the parameters from the Markov chain. Hence,
    we calculate the approximation of the expected traffic rate. The validation
    of the traffic model is using simulation and compared to the previous traffic
    model.


    Machine-type communication (MTC) has the essential role for supporting
    in connecting the huge number of devices in the 5G systems, which is predicted
    to be officially released in 2020. Massive MTC (mMTC) is the key
    to solve a large number of devices as its low-cost energy consumption and
    wide area coverage. Enabling the massive number of machine-type devices(
    MTDs) to request services to the base stations (BSs) resulted in the
    randomness of the random access mechanism. The position of MTDs, BSs,
    and the events are modeled in Spatial Poisson Point Process (SPPP), as the
    arrival of the events is based on the Poisson Arrival Process. Stochastic geometry
    is used to capture the characterization of the mMTC over cellular
    and events with enhanced access-barring class and random access through
    the PPP. Then, we proposed the event-based traffic model by combining
    the spatial point process and the poisson arrival process as the event model
    (Spatial Point Event) with the parameters from the Markov chain. Hence,
    we calculate the approximation of the expected traffic rate. The validation
    of the traffic model is using simulation and compared to the previous traffic
    model.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Research Interests in Modeling mMTC for 5G . . 4 1.2.2 Interesting Approach from Event Point of View . . 6 1.3 Thesis Contribution and Limitations . . . . . . . . . . . . 7 1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . 8 2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Background of the Event-based Concept . . . . . . . . . . 10 2.2 Relation of Markov Chain to Voronoi Tesselation [1] . . . 12 vi 2.3 Recent Traffic Models . . . . . . . . . . . . . . . . . . . 14 2.3.1 Source Traffic Model (STM) and Aggregated Traffic Model (ATM) . . . . . . . . . . . . . . . . . . 15 2.3.2 Coupled Markov Modulated Poisson Processes (CMMPP) [2] 17 2.3.3 Spatial Poisson Point Processes (SPPP) [3] . . . . 19 2.3.4 Spatio Temporal Traffic Model (STTM) [4] . . . . 20 3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.1 Symbols in Thesis . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Event Scenario . . . . . . . . . . . . . . . . . . . . . . . 25 3.4 Spatial Point Event (SPE) . . . . . . . . . . . . . . . . . . 28 3.5 Traffic Modeling . . . . . . . . . . . . . . . . . . . . . . 31 3.6 Performance Metrics . . . . . . . . . . . . . . . . . . . . 33 4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 34 4.1 Parameters Used for Simulation . . . . . . . . . . . . . . 34 4.2 Expected Total Rates . . . . . . . . . . . . . . . . . . . . 35 4.2.1 Event Density (E) . . . . . . . . . . . . . . . . . 35 4.2.2 Number of Events (N) . . . . . . . . . . . . . . . 36 4.2.3 Comparison to the other traffic model . . . . . . . 38 vii 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 viii

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i
    Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
    Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . iv
    Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
    List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
    List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
    1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . 1
    1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 4
    1.2.1 Research Interests in Modeling mMTC for 5G . . 4
    1.2.2 Interesting Approach from Event Point of View . . 6
    1.3 Thesis Contribution and Limitations . . . . . . . . . . . . 7
    1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . 8
    2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
    2.1 Background of the Event-based Concept . . . . . . . . . . 10
    2.2 Relation of Markov Chain to Voronoi Tesselation [1] . . . 12
    vi
    2.3 Recent Traffic Models . . . . . . . . . . . . . . . . . . . 14
    2.3.1 Source Traffic Model (STM) and Aggregated Traffic
    Model (ATM) . . . . . . . . . . . . . . . . . . 15
    2.3.2 Coupled Markov Modulated Poisson Processes (CMMPP) [2] 17
    2.3.3 Spatial Poisson Point Processes (SPPP) [3] . . . . 19
    2.3.4 Spatio Temporal Traffic Model (STTM) [4] . . . . 20
    3 Proposed Model . . . . . . . . . . . . . . . . . . . . . . . . . . 22
    3.1 Symbols in Thesis . . . . . . . . . . . . . . . . . . . . . . 22
    3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . 23
    3.3 Event Scenario . . . . . . . . . . . . . . . . . . . . . . . 25
    3.4 Spatial Point Event (SPE) . . . . . . . . . . . . . . . . . . 28
    3.5 Traffic Modeling . . . . . . . . . . . . . . . . . . . . . . 31
    3.6 Performance Metrics . . . . . . . . . . . . . . . . . . . . 33
    4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . 34
    4.1 Parameters Used for Simulation . . . . . . . . . . . . . . 34
    4.2 Expected Total Rates . . . . . . . . . . . . . . . . . . . . 35
    4.2.1 Event Density (E) . . . . . . . . . . . . . . . . . 35
    4.2.2 Number of Events (N) . . . . . . . . . . . . . . . 36
    4.2.3 Comparison to the other traffic model . . . . . . . 38
    vii
    5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
    5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 40
    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
    viii

    無法下載圖示 全文公開日期 2020/01/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE