簡易檢索 / 詳目顯示

研究生: 周志昇
Chih-Sheng Chou
論文名稱: 非線性液流阻尼器之數值與實驗整合研究
An Integrated Numerical and Experimental Investigation for Nonlinear Fluid Damper
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳正誠
Cheng-Cheng Chen
陳呈芳
none
郭鴻森
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 207
中文關鍵詞: 液流阻尼器數值分析新型式
外文關鍵詞: Fluid Damper
相關次數: 點閱:140下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現階段市面上常見之阻尼器多屬於鑽孔式與外環式,然而無論是鑽孔式或是外環式皆有不同的缺點,鑽孔式在低速時的性能較低;而外環式則式加工不易。本研究提出阻尼器性能數值模擬,並透過不同設計參數組合,評估其對阻尼器性能以及遲滯迴圈之影響;藉由數值模擬與實驗量測兩項利器之結合,來了解各參數與阻尼力的相關性,進而確認可能之關鍵參數,以做為未來進行新型設計之研發。首先量測阻尼器之性能曲線,並且利用商用熱流分析軟體SC/Tetra進行模擬,再將兩者進行比對並且微調模擬參數,進而確立阻尼器模擬方法之可靠度。接著將針對不同流孔、溫度、速度進行模擬,並搭配文獻上之相關阻尼器現象進行比對,以確立所建立模擬模式之準確性。
接著將針對傳統之阻尼器型式支流場特性做分析,進行設計變更,並且搭配不同流孔大小、溫度、速度進行模擬後再與傳統型式之阻尼器進行比對。在重覆上述步驟後得到最佳設計,並且於國家地震中心進行量測,來得到完整之遲滯迴圈圖。從模擬與實驗結果可得知,模擬與實驗結果誤差皆在10%以下。本研究成功找出阻尼器之模擬方法,並且藉由數值模擬得到最佳設計後,在進行實驗量測得到新型式液流阻尼器。


This study intends to analyze and improve the performance of nonlinear fluid damper by integrating efforts from numerical simulation, mockup fabrication, and experimental verification. At first, the three-dimensional configuration of damper is established for generating the numerical model to simulate the flow patterns associated with the original damper by using the commercial CFD code SC/Tetra. Then, the calculated results are utilized to predict its performance over different velocities and applied to illustrate the flow and pressure distributions for executing the flow visualization, which can provide important information for generating the design alternative. Moreover, the parametric study on the damper geometry is carried out with the aids of this numerical tool to attain an appropriate set of design parameters. Thereafter, the new damper prototype is manufactured via CNC technique for executing the comprehensive performance test in the NAR Labs (national applied research laboratories) at National Center for Research on Earthquake Engineering. Consequently, the numerical system can be verified according to these experimental results. Furthermore, the flow-induced performance reduction due to the temperature rise is examined and discussed in details. Also, an acceptable deviation (less than 10%) between CFD and test outcomes is identified on all cases considered in this work. In summary, the accomplishment of this study not only attains a better damper design, but also provides a systematic and reliable scheme to enhance performance for a nonlinear fluid damper

摘要V ABSTRACTVI 致謝VII 目錄VIII 圖索引XIII 表索引XVIII 第一章 緒論1 1.1 前言1 1.2 液流阻尼器發展歷史4 1.3 文獻回顧7 1.4 研究動機與方法10 1.5 研究目的12 第二章 阻尼器介紹與參數設計16 2.1 基本構造及原理16 2.2 液流阻尼器之簡介18 2.3 液流阻尼器之力學模式19 2.4 液流阻尼器之勁度效應23 2.5 液流阻尼器之設計24 2.6 填充液的剪切稀化行為26 第三章物理模式與數值方法29 3.1 統御方程式30 3.2 數值計算理論33 3.2.1 離散化方式33 3.2.2 重疊網格處理(Overset Mesh)35 3.3 速度與壓力耦合的處理36 3.4 數值求解流程38 3.5 紊流模式39 3.6 邊界條件設定44 第四章非線性液流阻尼器數值模擬與實驗45 4.1 數值模擬原型簡介與模型建立45 4.1.1 數值分析模型之確立46 4.2 網格建構與獨立性分析55 4.2.1 網格建構55 4.2.2 網格獨立性驗證56 4.3 非線性鑽孔型液流阻尼器設計57 4.4 相關參數模擬63 4.4.1 不同速度下之阻尼力比較63 4.4.2 不同孔隙率下之阻尼力比較66 4.4.3 不同溫度下之性能模擬66 4.5 非線性鑽孔型液流組尼器之實驗70 4.5.1 安東試驗台介紹70 4.5.2 實驗流程75 4.5.3 實驗結果77 4.5.4 鑽孔型液流阻尼器實驗與模擬之比較78 第五章 新型液流阻尼器設計82 5.1 外流道液流阻尼器設計83 5.2 外流道液流阻尼器模擬84 5.2.1 一次阻尼流孔模擬85 5.2.2 孔隙比與阻尼係數之關係94 5.2.3 不同溫度與阻尼力之關係94 5.2.4 二次阻尼流孔大小確立94 5.3 鑽孔內環式液流阻尼器設計95 5.4 鑽孔內環式液流阻尼器模擬96 5.4.1 一次阻尼流孔模擬96 5.4.2 不同溫度下之模擬結果97 5.4.3 孔隙比與阻尼係數之關係109 5.5 安東廠內試驗結果109 5.5.1 位移-時間之探討110 5.5.2 遲滯迴圈之探討110 5.6 國家地震中心試驗116 5.6.1 國家地震中心試驗說明116 5.6.2 國家地震中心試驗項目117 5.7 國家地震中心試驗結果118 5.7.1 阻尼器位移之探討119 5.7.2 遲滯迴圈之探討120 5.7.3 風力循環載重試驗121 5.7.4 鑽孔內環式液流阻尼器之性能曲線123 5.8 使用直動式彈簧調壓閥之液流阻尼器136 第六章 結論與建議143 6.1 結論143 6.1.1 不同形式液流阻尼器比較143 6.1.2 鑽孔內環式液流阻尼器實驗結果144 6.1.3 模擬結果與實驗比較147 6.2 建議147 參考文獻149 附錄1 鑽孔內環式阻尼器於安東廠內試驗之位移-時間圖154 附錄2 鑽孔內環式阻尼器於安東廠內試驗之遲滯迴圈圖158 附錄3 鑽孔內環式阻尼器於國震中心試驗之位移-時間圖162 附錄4 鑽孔內環式阻尼器於國震中心試驗之遲滯迴圈圖172 附錄5 使用直動式彈簧之阻尼器於國震中心之試驗結果183

[1] Constantino, M.C. and Symans, M.D., “Experimental and Analytical Investigation of Seismic Response of Structure with Supplemental Fluid Viscous Dampers”, NCEER Report 92-0032, SUNY/Buffalo, New York, 1992.
[2] Tsopelas, P., Okamoto, S., Constantinou, M. C., Ozaki, D., and Fujii, S., “Experimental and Analytical Study of Systems Consisting of Sliding Bearings, Rubber Restoring Force Devices, and Fluid Dampers”, Published as Report NCEER-94-0002, by the National Center for Earthquake Engineering Research, State University of New York at Buffalo, 1994.
[3] Reinhorn, A. M., Li, C., and Constantinou, M. C., “Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping, Part 1 - Fluid Viscous Damping Devices”, Published as Report NCEER-95-0001, by the National Center for Earthquake Engineering Research, State University of New York at Buffalo, 1995.
[4] Constantinou﹐M. C. and Symans﹐M. D.﹐”Semi-Active Control of Earthquake Induced Vibration”﹐Eleventh World Conference on Earthquake Engineering﹐No. 95﹐1996.
[5] Abdel-Rohman, M. and Leipholz﹐H. H., ”Active Control of Flexible Structures”﹐Journal of the Structure Division﹐ASCE﹐Vol. 104﹐No. STB, pp. 1251~1266, 1978
[6] Chiarugi, A., Melegari, A. and Spinelli, P., “On the Dynamic Behavior of Bridge Dampers under Seismic Excitation”, Proc. Eighth European Conf. on Earthquake Engineering., No. 5, Lisbon, pp. 73-80, 1986.
[7] Markris, N. and Constantinou, M.C., “Fractional Derivative Maxwell Model for Viscous Dampers”, Journal of Structural Engineering, ASCE, Vol. 117, No. 9, pp. 2708-2724, 1991
[8] Makris, N., “Viscous Heating of Fluid Dampers I: Small-Amplitude Motions”, Journal of Engineering Mechanics, ASCE, Vol. 124, No. 11, pp. 1210-1216, 1998.
[9] Makris, N., Roussos, Y., Whittaker, A.S., and Kelly, J. M., “Viscous Heating of Fluid Dampers II: Large-Amplitude Motions”, Journal of Engineering Mechanics, ASCE, Vol. 124, No. 11, pp. 1217-1223, 1998.
[10] Tsai, C.S. and Lee, H.H., “Applications of Viscoelastic Dampers to High-rise Buildings”, Journal of Structural Engineering, ASCE, Vol. 119, No. 4, pp. 1222-1233, 1993.
[11] Tsai, C. S. and Lee, H. H., “Applications of Viscoelastic Dampers to High-rise Buildings for Mitigation”, Journal of Structural Engineering, ASCE, Vol. 120, No. 12, pp. 3680-3687, 1994.
[12] Tang, J. P., Lee, J. S., and Li, W. S., “Study on a New Energy-Dissipation Device System for Bridges”, Proceedings, National Science Council ROC(A), Vol. 20, No. 5, pp. 573-585, 1996.
[13] Constantinou, M. C., Tsopelas, P., Hammel W., and Sigaher, A.N., “Toggle-Brace-Damper Seismic Energy Dissipation Systems”, Journal of Structural Engineering, ASCE, Vol. 127, No. 2, pp. 105-112, 2001.
[14] 李永峰,“結構液流阻尼器之設計及應用”,國立成功大學土木工程研究所碩士論文,1997年。
[15] 徐德修,侯建元,盧思源,周尚儀,“高壓阻尼器之研發”,財團法人中興工程顧問社專案研究報告,SEC/R-ST-01-01,2000年。
[16] 盧思源,“矽液對液流阻尼器效能影響之研究” ,國立成功大學土木工程研究所碩士論文,2000年。

[17] 許文奕,“高強效液流阻尼器之研發”,國立成功大學土木工程研究所碩士論文,1999年。
[18] 曾英豪,“雙間隙液流阻尼器之特性測試”,國立成功大學土木工程研究所碩士論文,2009年。
[19] Taylor, D. P., “Fluid Dampers for Applications of Seismic Energy Dissipation and Seismic Isolation”, Eleventh Word Conference on Earthquake Engineering, No. 798, 1996.
[20] 李錫堤,台灣地震進入活躍期,玉山周報,第 25 期,2009年。
[21] 陳信元,“液流阻尼器物理特性之研究”,國立成功大學土木工程研究所碩士論文,2001年。
[22] Currie, C.C. and Smith, B. F., “Flow Characteristics of Organopolysiloxane Fluids and Greases”, Industrial and Engineering Chemistry, Vol. 42, No. 12, pp. 2457-2462, 1950.
[23] Lee, C. L., Polmanteer, K. E., and King, E. G., “Flow Behavior of Narrow-Distribution Polydimethylsiloxane”, Journal of Polymer Science, Part A-2, No. 8, pp. 1909-1916, 1970.
[24] 李俊德,“結構液流阻尼器之設計及應用”,國立成功大學土木工程研究所碩士論文,2003年。
[25] NEHRP Recommended Previous for Seismic Regulation for New Buildings and Other Structures, Part 2: Commentary (FEMA 369), Building Seismic Safety Council, National Institute of Building Sciences, Washington, D.C., 2000.

無法下載圖示 全文公開日期 2019/08/05 (校內網路)
全文公開日期 2024/08/05 (校外網路)
全文公開日期 2024/08/05 (國家圖書館:臺灣博碩士論文系統)
QR CODE