簡易檢索 / 詳目顯示

研究生: Rizki Aviandri Suharto
Rizki Aviandri Suharto
論文名稱: 食品業中Zero-Inflated卜瓦松分配的雙次抽樣計畫
A Double Sampling Plan for the Zero-Inflated Poisson Distribution in the Food Industry
指導教授: 王福琨
Fu-Kwun Wang
口試委員: 羅士哲
Shih-Che Lo
Yeneneh Tamirat
Yeneneh Tamirat
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理系
Department of Industrial Management
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 65
中文關鍵詞: 驗收抽樣方案屬性雙抽樣方案zero-inflated卜瓦松食品行業
外文關鍵詞: acceptance sampling plan, double sampling plan by attributes, zero-inflated Poisson, food industry
相關次數: 點閱:226下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

實施合適的抽樣計劃,在食品業中是保護消費者免受於致病微生物
的重要任務。在本研究中,我們替Zero-inflated卜瓦松分配開發了
一個雙次抽樣計畫(DSP)作為替代抽樣方案。本研究提供了R軟體的
code來決定第一階段方案的參數,如樣本大小、可接受的值和拒絕的值
(n_1,c_1,r_1),以及在第二階段的樣本數和接受值(n_2,c_2)。就平均樣本大小(ASN)和相同水準品質總風險、可接受品質水準(AQL) 以
及拒收水準而言(LTPD),DSP的表現優於單次抽樣計劃(SSP)。使用各種給定的混合比例(φ)和指定值(p_1,α,p_2,β)的模擬數據來說明應用。


Implementing appropriate sampling plan is an important task to protect consumers from pathogenic microorganisms in the food industry. In this study, we develop a double sampling plan (DSP) for the zero-inflated Poisson distribution as an alternative sampling plan. This research provides R-code to determine the plan parameters such as the number of sample size, the acceptance number, and the rejection number on the first stage (n_1, c_1, and r_1), and the number of the sample size and the acceptance number on the second stage (n_2 and c_2). The DSP performs better than the single sampling plan (SSP) in terms of average sample size (ASN) and total risk with the same level quality, acceptable quality level (AQL) and lot of tolerance percent defective (LTPD). Simulated data with various set of given mixing proportion (φ) and specified values (p_1,α,p_2,β) are used to illustrate the applications.

摘要 I ABSTRACT II ACKNOWLEDGEMENT III TABLE OF CONTENTS IV LIST OF FIGURES V LIST OF TABLES VI LIST OF APPENDICES VII CHAPTER 1: INTRODUCTION 1 1.1 Research background and motivation 1 1.2 Research objectives 3 1.3 Research limitations 3 1.4 Research flow 3 CHAPTER 2: LITERATURE REVIEW 6 2.1 Sampling plan in the food industry 6 2.2 Single sampling plan by attributes 9 2.3 Sampling plan for the zero-inflated Poisson distribution 12 2.4 Double sampling plan by attributes 14 CHAPTER 3: RESEARCH METHOD 17 CHAPTER 4: ANALYSIS AND DISCUSSION 22 4.1 Comparison between DSP and SSP 23 4.2 Illustrative examples 30 CHAPTER 5: CONCLUSIONS AND FUTURE RESEARCH DIRECTION 40 5.1 Conclusion. 40 5.2 Future research direction. 40 REFERENCES 42 APPENDICES 46

1. Duncan AJ. Quality Control and Industrial Statistics. Irwin Inc: Homewood, Illinois, 1986.
2. Dodge HF, Romig HG. Sampling Inspection Tables. Wiley: New York, 1959.
3. European Commission. Commission regulation No 2073/2005 (OJ L338, p1, 22/12/2005) of 15 November 2005 on microbiological criteria for foodstuffs. 2005.
4. European Commission. Commission regulation (EC) no. 1441 on microbiological criteria for foodstuffs. 2007.
5. Gonzales-Barron U, Lenahan M, Sheridan JJ, Butler F. Count data distributions and their zero-modified equivalents as a framework for microbial data with relatively high occurrence of zero counts. International Journal of Food Microbiology 2010; 136: 268-277.
6. Gonzales-Barron U, Butler F. Characterization of within-batch and between-batch variability in microbial counts in foods using Poisson-gamma and Poisson-lognormal regression models. Food Control 2011; 22: 1268-1278.
7. Gonzales-Barron U, Lenahan M, Sheridan JJ, Butler F. Use of a Poisson-gamma model to assess the performance of the EC process hygiene criterion for Enterobacteriaceae on Irish sheep carcasses. Food Control 2012; 25: 172-183.
8. Govindaraju K, Subramani K. Selection of double sampling attributes plan for given acceptable quality level and limiting quality level. Communication in Statistic: Simulation and Computation 1992; 21: 221-242.
9. Govindaraju K, Ganesalingan S. Sampling inspection for resubmitted lots. Communication in Statistic: Simulation and Computation 1997; 26: 1163-1176.
10. Granato D, Ares G. Mathematical and Statistical Methods in Food Science and Technology. IFT Press and Wiley-Blackwell: Sussex, 2014.
11. Gunther WC. Use of the binomial, hypergeometric and Poisson tables to obtain sampling plans. Journal of Quality 1969; 1(2): 105-109.
12. Hamaker H, Strik RV. The efficiency of double sampling for attributes. Journal of the American Standard Association 1955; 50: 830-849.
13. Jarvis B. Statistical Aspects of the Microbiological Examination of Foods (3rd edition). Academic Press: Amsterdam, 2016.
14. International Commission on Microbiological Specifications for Foods (ICMSF). Microbiological Testing in Food Safety Management, vol. 7. Kluwer Academic/Plenum Publishers: New York, 2002.
15. International Commission on Microbiological Specifications for Foods (ICMSF). Microbiological Sampling Plans: A Tool to Explore ICMSF Recommendations. Version 2.05. Available from http://www.icmsf.iit.edu/main/sampling_plans.html, 2009.
16. Jongenburger I, Reji MW, Boer EPJ, Gorris LGM, Zwietering MH. Random or systematic sampling to detect a localized microbial contamination within a batch of food. Food Control 2011; 22: 1448-1455.
17. Jongenburger I, Bassett J, Jackson T, Zwietering MH, Jewell K. Impact of microbial distributions on food safety I factors influencing microbial distributions and modelling aspects. Food Control 2012; 26: 601-609.
18. Kilsby DC. Sampling Schemes and Limits In: Brown, M.H. (Ed.) Meat Microbiology. Academic Press: London, 1982.
19. Kilsby DC, Aspinall LJ, Baird-Parker AC. A system for setting numerical microbiological specifications for foods. Journal of Applied Bacteriology 1979; 46: 591-599.
20. Lambert D. Zero-inflated Poisson regression with an application to defects in manufacturing. Technometrics 1992; 34: 1-14.
21. Loganathan A, Shalini K. Selection of single sampling plans by attributes under the conditions of zero-Inflated Poisson distribution. International Journal of Quality and Reliability Management 2014; 31(9): 1002-1011.
22. McLachlan G, Peel D. Finite Mixture Models. John Wiley& Sons: New York, 2000.
23. Mussida A, Gonzales-Barron U, Butler F. Effectiveness of sampling plans by attributes based on mixture distributions characterizing microbial clustering in food. Food Control 2013; 34: 50-60.
24. Montgomery DC. Introduction to Statistical Quality Control. Wiley: New York, 2013.
25. Nauta MJ. Microbiological risk assessment models for partitioning and mixing during food handling. International Journal of Food Microbiology 2005; 100: 311-322.
26. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria, 2017.
27. Rao GS, Aslam M. Resubmitted lots with single sampling plans by attributes under the conditions of zero-inflated Poisson distribution. Communications in Statistics-Simulation and Computation 2014; 46(3): 1814-1824.
28. Schilling EG, Neubauer DV. Acceptance Sampling in Quality Control (2nd edition). CRC Press: Boca Raton, FL, 2009.
29. Soundararajan V, Aruminayagam SD. A generalized procedure for selection of attribute double sampling plan. Communications in Statistics-Simulation and Computation 1990; 19(3): 1015-1034.
30. Van Schothorst M, Zwietering MH, Ross T, Buchanan RL, Cole MB. Relating microbiological criteria to food safety objectives and performance objectives. Food Control 2009; 20: 967-979.
31. Vijayaraghavan R, Rajagopal K, Loganathan A. A procedure for selection of a gamma-Poisson single sampling plan by attributes. Journal of Applied Statistics 2008; 35(2): 149-160.
32. Zuur AF, Ieno EN, Walker NJ, Anatoly AS, Smith GM. Mixed Effects Models and Extensions in Ecology with R. Springer Science + Business Media: New York, 2009.

QR CODE