簡易檢索 / 詳目顯示

研究生: 方睿智
Agus - Riyanto Poerwoprajitno
論文名稱: 鐵硫觸媒產氫催化機制之探討
Mechanistic Study of Hydrogen Production by Iron Thiolate Catalyst
指導教授: 林昇佃
Shawn D.Lin
江明錫
Ming-Hsi Chiang
口試委員: 劉陵崗
Ling-Kang Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 82
中文關鍵詞: 氫氣觸媒
外文關鍵詞: Hydrogen, iron, sulfur, catalyst
相關次數: 點閱:250下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

化合物[TBA][(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5] [TBA][1]已知可被一次質子化產生金屬氫化物[(μ,κ2-bdt)(µ-PPh2)(µ-H)Fe2(CO)5] (1µH),二次質子化發生在終端硫上。二次質子化合物[(μ,κ2-bdtH)(µ-PPh2)(µ-H)Fe2(CO)5]+ (1µHSH+)可與二茂鐵癸烷 (DMFc)反應產生氫氣,所得的最終產物為1µH以及二茂鐵癸烷陽離子 (DMFc+)。產氫的效率在15分鐘之內可達75%,結果展現了化合物[TBA][1]為具有高產氫活性觸媒。此論文中,我們也探討了這個系統的產氫機制,在過量的酸環境中會使得產氫的效率降低。接著,我們使用了對二硫醇苯環配位基做修飾的化合物[TBA][(3,6-(OSitBuMe2)2bdt)Fe2(CO)5(PPh2)] ([TBA][2])來產氫,結果產氫效率有顯著的降低。最後,我們利用泛涵密度理論來做計算,綜合實驗的結果,此一產氫的催化路徑為質子偶合電子轉移之反應。


The mechanistic study of hydrogen production by iron thiolate catalyst is reported. Complex [TBA][(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5] [TBA][1] can be protonated which the first protonation generates the hydride between diiron and the second protonation occurs on the terminal sulfur. The [(μ,κ2-bdtH)(µ-PPh2)(µ-H)Fe2(CO)5]+ (1µHSH+) can react with decamethylferrocene (DMFc) to produce hydrogen, leading to [(μ,κ2-bdt)(µ-PPh2)(µ-H)Fe2(CO)5] (1µH) and DMFc+ as the final products. The yield of hydrogen production reached 75% in 15 minutes. It is shown that complex [TBA][1] active is an active catalyst for proton reduction. The yield of hydrogen production has decreased with concomitantly increasing amount of acids and electron donors. Furthermore, we studied the hydrogen production by the derivatives of complex [TBA][1] with steric functional groups in the bdt ligands The complex [TBA][(3,6-(OSitBuMe2)2bdt)Fe2(CO)5(PPh2)] ([TBA][2]) can catalyze the proton reduction. The rate of hydrogen production catalyzed by 2μHSH+ was slower than that by 1μHSH+. To study the mechanism of the hydrogen evolution reaction (HER), we investigated the possible mechanistic routes by DFT calculation to collaborate with the experimental observation. The results indicated that hydrogen is produced via proton coupled electron transfer (PCET) pathway.

ABSTRACT i AKNOWLEDGMENT ii TABLE OF CONTENTS iii LIST OF FIGURES v LIST OF TABLES viii ABBREVIATIONS ix CHAPTER 1 Introduction 1 1.1 The energy challenges 1 1.2 Hydrogen as a potential energy carrier 2 1.3 Hydrogenase 3 1.4 [FeFe] hydrogenase Model 7 1.5 Proton Coupled Electron Transfer 9 1.6 Motivation 11 CHAPTER 2 Experimental 12 2.1 General procedure 12 2.2 Synthesis of protonated decamethylferrocene (DMFcH+) 13 2.3 Synthesis of decamethylferrocenium (DMFc+) 13 2.4 Synthesis of [(μ,κ2-bdt)(µ-PPh2)(µ-H)Fe2(CO)5] (1µH) 14 2.5 Synthesis[(μ,κ2-bdtH)(µ-PPh2)(µ-H)Fe2(CO)5][BArF24] ([1µHSH+][BArF24])14 2.6 Synthesis of [(3,6-(OSitBuMe2)2bdtH))(µ-H)Fe2(CO)5 (µ-PPh2)][BArF24] ([2µHSH][BArF24]) 15 2.7 Reduction reaction of 1μHSH+ by cobaltocene 15 2.8 Reduction reaction of 1μH by bis(pentamethylcyclopentadienyl)cobalt. 16 2.9 Hydrogen production in the presence of limited of limited amount of acid. 16 2.10 Hydrogen production experiment in the presence of excess acid. 17 2.11 Reaction [(DMFcH+)(OTf-)] with 1µH 17 CHAPTER 3 Results and Discussion 19 3.1 Chemical properties of complex [(μ,κ2-bdt)(μ-PPh2)Fe2(CO)5]‒ 19 3.2 Role of complex [TBA] [(bdt)(PPh2)Fe2(CO)5] in hydrogen production 23 3.3 Discussion on the mechanism 32 3.4 Hydrogen production by derivate of complex [TBA][1] 36 CHAPTER 4 Conclusions 38 REFERENCES 40 APPENDIX 43

1. Krol, R. van de; Gratzel, M. Photoelectro - chemical Hydrogen Production; Krol, R. can de, Ed.; Springer, 2012, pp. 3.
2. Brueckner, L.; Trovato, L.; Chow, C.; Govindarajulu, U.; Boerke, S. Oxford Journals 2015, 44, 536.
3. Edenhofer, O.; Madruga, P.; Sokona, Y.; Farahani, E.; Kadner, S.; Seyboth, K.; Adler, A.; Baum, I.; S., B.; Elickemeier, P.; Savolainen, J.; Shclomer, S.; Stechow, C. von; Zwickel, T.; Minx, J. . Summary for Policymakers, In: Climate Change. Contriubution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; 2014, pp. 10.
4. Gao, S.; Huang, S.; Duan, Q.; Hou, J.; Jiang, D.; Liang, Q.; Zhao, J. Int. J. Hydrogen Energy 2014, 39, 10434.
5. Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100.
6. Cammack, R. Nature 1999, 397, 214.
7. Peters, J. W.; Lanzilotta, W. N.; Lemon, B. J.; Seefeldt, L. C. Science 1998, 282, 1853.
8. Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure 1999, 7, 13.
9. Lubitz, W.; Ogata, H.; Ru, O.; Reijerse, E. Chem. Rev. 2014, 114, 4081.
10. Camara, J. M.; Rauchfuss, T. B. J. Am. Chem. Soc. 2011, 133, 8098.
11. Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B. Chem. Rev. 2007, 107 , 4414.
12. Unwin, D. G. Investigations into electrocatalytic reduction of protons to hydrogen by complexes inspired by the FeFe hydrogenase enzyme active site, University College London, 2012, pp.31-43.
13. Simmons, T. R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V. Coord. Chem. Rev. 2014, 270-271, 127.
14. Greco, C.; Bruschi, M.; Gioia, L. De; Ryde, U. Inorg. Chem. 2007, 46, 15.
15. Lyon, E.; Georgakaki, I. P.; Reibenspies, J. H.; Darensbourg, M. Y. Angew. Chem. Int. Ed. Engl. 1999, 38, 3178.
16. Chong, D.; Georgakaki, I. P.; Mejia-rodriguez, R.; Sanabria-chinchilla, J.; Soriaga, M. P.; Darensbourg, M. Y. Dalton Trans. 2003, 21, 4158.
17. Capon, J.-F.; Gloaguen, F.; Schollhammer, P.; Talarmin, J. J. Electroanal. Chem. 2004, 566, 241.
18. Justice, A. K.; Zampella, G.; Gioia, L. De; Rauchfuss, T. B.; Vlugt, J. I. Van Der; Wilson, S. R. Inorg. Chem. 2007, 46, 1655.
19. Wang, Z.; Liu, J.-H.; He, C.-J.; Jiang, S.; Åkermark, B.; Sun, L.-C. J. Organomet. Chem. 2007, 692, 5501.
20. Cloirec, A. Le; Best, S. P.; Borg, S.; Davies, S. C.; Evans, D. J.; Hughes, L.; Pickett, C. J. Chem. Commun. 1999, 22, 2285.
21. Mayer, J. M.; Rhile, I. J. Biochim. Biophys. Acta - Bioenerg. 2004, 1655, 51.
22. Hammes-Schiffer, S. Energy Environ. Sci. 2012, 5 (7), 7696.
23. Liu, Y.-C.; Chu, K.-T.; Jhang, R.-L.; Lee, G.-H.; Chiang, M.-H. Chem. Commun. 2013, 49, 4743.
24. Yakelis, N. A.; Bergman, R. G. Organometallic 2005, 24, 3579.
25. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zhe, D. J. F. Gaussian, Inc., Wallingford CT, 2009.
26. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
27. Lee, C.; Hill, C.; Carolina, N. Phys. Rev. B 1988, 37, 785.
28. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
29. Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239.
30. Miertus, S.; E., S.; Tomasi, J. Chem. Physy. 1981, 55, 117.
31. Hamada, S.; Funasako, Y.; Mochida, T.; Kuwahara, D.; Yoza, K. J. Organomet. Chem. 2012, 713, 35.
32. Felton, G. a N.; Glass, R. S.; Lichtenberger, D. L.; Evans, D. H. Inorg. Chem. 2006, 45, 9181.
33. Wright, R. J.; Zhang, W.; Yang, X.; Fasulo, M.; Tilley, T. D. Dalton Trans. 2012, 41, 73.
34. Felton, G. a N.; Vannucci, A. K.; Chen, J.; Lockett, L. T.; Okumura, N.; Petro, B. J.; Zakai, U. I.; Evans, D. H.; Glass, R. S.; Lichtenberger, D. L. J. Am. Chem. Soc. 2007, 129, 12521.
35. Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.
36. Hatay, I.; Ge, P. Y.; Vrubel, H.; Hu, X.; Girault, H. H. Energy Environ. Sci. 2011, 4 , 4246.
37. Hatay, I.; Su, B.; Li, F.; Partovi-Nia, R.; Vrubel, H.; Hu, X.; Ersoz, M.; Girault, H. H. Angew. Chem. Int. Ed. Engl. 2009, 48 , 5139.

QR CODE