簡易檢索 / 詳目顯示

研究生: 呂宗祐
Zhong-Yu Lu
論文名稱: 抗輻射之低溫度係數平坦光源研製與即時監控
Implementation of Anti-radiation Broadband Light Source and its Real-time Monitoring
指導教授: 廖顯奎
Shien-kuei Liaw 
口試委員: 張宏鈞
Hung-chun Chang
徐世祥
Shih-hsiang Hsu
游易霖
Yi-lin Yu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 74
中文關鍵詞: 太空光電超螢光光源即時監控寬頻光源光纖光柵
外文關鍵詞: Real-time monitoring, Space optoelectronics, Superfluorescence fiber source (SFS), broadband light sourc, fiber Bragg grating
相關次數: 點閱:244下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文採用雙通後向之超螢光光源,也就是1550nm C頻帶之溫度補償之摻鉺光纖寬頻光源,模擬其置於太空極端環境中,欲即時監控寬頻光源之平均波長與輸出光功率之變化,以便作適當應對與處置。第二章分別作文獻探討超螢光光源的主要核心技術與即時監控的光路設計,針對抗輻射與溫度之穩定光源為目標。第三章介紹寬頻譜之超螢光光源的組成重要元件,再來透過在光源輸出端之前添加一段摻鉺光纖吸收體,此吸收體會抑制1530 nm波段,其抑制效果取決於摻雜濃度與長,實驗結果證實成功地藉由選擇適當的摻雜濃度與長度來進行光源平坦度優化。
    第四章為光源穩定度分析,在溫度穩定性方面,分析光源輸出頻譜圖後發現,未受寬頻譜光柵濾除的1530 nm波段為影響環境溫度變化之平均波長穩定性主要原因,可藉由吸收體進行優化抑制,實驗結果證實成功地優化整體系統架構之平均波長穩定性。輻射穩定性方面,光源受到輻射所引起之衰減,可藉由寬頻譜光柵作為反射元件,以進行光退火機制達成修復作用。第五章以1530 nm波段作為參考光源之即時監控設計,由於1530 nm波段對於1550波段的寬頻光源之平均波長有著相依關係,因此在即時監控架構中添加寬頻譜光柵將1530 nm波段反射出來加以驗證,在環境溫度變化下(攝氏-10 oC至80 oC),實驗結果證實除了高溫區間(70 -80 oC)外,其餘溫度點在量測1530 nm波段之平均功率對於主要光源之平均波長呈現良好的對應關係,並且具有良好的線性度。


    In this thesis, we studied temperature-compensating erbium-doped fiber (EDF) broadband light source for extreme environments (temperature, radiation) application. The light source operating in 1550 nm band is in backward pumping scheme, double-pass scheme. The average power and mean wavelength of broadband light source were real-time monitoring to confirm its reliability. In Chapter 2, several prior works for broadband light source are studied and discussed. Some optic design and real-time monitoring skills are referred and modified in our thesis to achieve anti-radiation and temperature stability goals for the proposed broadband light source. Later, we introduced some important components for investigation the broadband superfluorescent source. Then, we put a piece of EDF as absorber before the output end. The EDF absorber may suppress the amplified spontaneous emission (ASE) of 1530 nm band to some extend by selecting appropriate length and doping concentration for EDF. Results shows that flattened broadband spectrum could be obtained.
    Then, we analyzed and discussed the stability of the light source in Chapter 4. In thermal stability, 1530 nm amplified spontaneous emission (ASE) in superfluorescence fiber source may affect the average thermal stability of mean wavelength and should be suppressed. Fortunately, the task could be realized by adding a piece of absorber and the thermal stability of mean wavelength could be improved successfully. In Gamma radiation experiment, the broadband superfluorescent source may result in fiber loss by radiation. Nevertheless, broadband fiber Bragg grating (BBFBG) may help to create photo-annealing effect to against the radiation induced attenuation (RIA). In Chapter 5, using 1530 nm ASE as the reference light source for real-time monitoring is proposed. The reason is because average power for 1530 nm band and 1550 nm are dependent with each other. Therefore, we used 1530 nm BBFBG as reflector to bounce the 1530 nm ASE as reference light source for real-time monitoring the 1550 nm band broadband superfluorescent source. Result shows the mean wavelength for 1550 nm band will shift to shorter wavelength when the bounced power in 1530 nm region increase accordingly. The relationship between them is quite linear in between temperature region of -10 to 60 oC.

    目錄 摘要 IV Abstract IV 致謝 IV 目錄 IV 圖表索引 IV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 第二章 超螢光光源與監控量測原理及文獻探討 4 2.1 超螢光光源之介紹 4 2.2 超螢光光源之架構 5 2.3 各種超螢光光源主要技術 8 2.4 監控量測原理 13 2.4 監控量測主要技術 14 第三章 超螢光光源之系統架構量測與優化 21 3.1 超螢光光源組成元件原理與簡介 21 3.1.1 泵激光源 22 3.1.2 摻鉺光纖 24 3.1.3 寬頻譜光纖光柵 25 3.1.4 光隔離器 29 3.2 超螢光光源之架構量測 29 3.3 超螢光光源之平坦度優化 30 第四章 超螢光光源之穩定性量測 36 4.1 環境溫度之系統穩定度量測 36 4.1.1 未使用吸收體之穩定性量測 37 4.1.2 使用高摻雜吸收體之穩定性量測 39 4.1.3 使用低摻雜吸收體之穩定性量測 42 4.2 環境輻射之系統穩定度量測 45 第五章 超螢光光源之即時監控架構 52 5.1 即時監控之構想 52 5.2 參考光源之1530 nm波段 54 5.3 設計即時監控架構 57 5.4 即時監控之溫度穩定性 61 5.4.1 利用OSA較精確量測 61 5.4.2 利用寬頻譜光柵反射參考光源之量測 63 5.5 本章小結 65 第六章 結論與未來展望 67 6.1 結論 67 6.2 未來展望 78 參考文獻 70   圖表索引 圖 2.1 單通前向泵激架構 6 圖 2.2 單通後向泵激SFS架構 6 圖 2.3 雙通前向泵激架構 7 圖 2.4 雙通後向泵激SFS架構 8 圖 2.5 應用於光纖陀螺儀之雙通前向泵激與法拉第旋轉鏡架構 9 圖 2.6 使用帶通濾波器之雙通後向超螢光光源優化平均波長穩定性架構 10 圖 2.7 使用摻鉺光纖濾波器與法拉的旋轉鏡之超螢光光源 11 圖 2.8 使用摻鉺光子晶體光纖之雙通前向光源優化平均波長穩定性 12 圖 2.9 利用窄頻的光纖光柵濾波器產生參考波長來監測光纖陀螺儀 15 圖 2.10 利用參考波長來校準平均波長之光纖陀螺儀 16 圖 2.11 光纖陀螺儀之光源波長控制 17 圖 2.12 使用光纖耦合器之光源波長控制 17 圖 2.13 使用光纖光柵之光源波長控制 18 圖 2.14 應用於光纖陀螺儀之高輻射穩定度光源架構 19 圖 2.15 高斯輸出頻譜 20 圖 3.1 寬頻譜光纖光柵超螢光光源系統架構 21 圖 3.2 溫控TEC影響泵激光源輸出光譜情形 22 圖 3.3 溫控TEC對輸出功率的影響 23 圖 3.4 泵激光源能量轉換 24 圖 3.5 三階鉺離子能階躍遷圖 25 圖 3.6 寬頻譜光纖光柵的反射光譜 26 圖 3.7 溫度梯度變化曲線 27 圖 3.8 溫度對光纖光柵波長漂移的影響 28 圖 3.9 雙通後向之寬頻譜光柵超螢光光源系統架構光譜圖 30 圖 3.10 使用吸收體之寬頻譜光柵超螢光光源系統圖 31 圖 3.11 採用高摻雜EDF當作吸收體之輸出光譜圖 32 圖 3.12 採用高摻雜EDF當作吸收體之位於1550 nm輸出光譜圖 32 圖 3.13 採用低摻雜EDF當作吸收體之輸出光譜圖 34 圖 3.14 採用低摻雜EDF當作吸收體之位於1550 nm輸出光譜圖 35 圖 4.1 溫度環境之系統穩定度量測示意圖 37 圖 4.2 未使用吸收體之平均波長穩定性量測圖 38 圖 4.3 未使用吸收體之輸出功率穩定性量測圖 38 圖 4.4 未使用吸收體之3dB頻寬穩定性量測圖 39 圖 4.5 高摻雜吸收體之平均波長穩定性量測圖 40 圖 4.6 高摻雜吸收體之輸出功率穩定性量測圖 41 圖 4.7 高摻雜吸收體之3dB頻寬穩定性量測圖 41 圖 4.8 低摻雜吸收體之平均波長穩定性量測圖 43 圖 4.9 低摻雜吸收體之輸出功率穩定性量測圖 43 圖 4.10 低摻雜吸收體之3dB頻寬穩定性量測圖 44 圖 4.11 輻射穩定度測試架構圖 46 圖 4.12 EDF與輻射源示意圖 46 圖 4.13 環境輻射變化下之輸出頻譜量測圖 47 圖 4.14 環境輻射變化下之平均波長穩定性量測圖 48 圖 4.15 環境輻射變化下之平均波長飄移量測圖 49 圖 4.16 環境輻射變化下之功率特性量測圖 50 圖 4.17 環境輻射變化下之3dB頻寬特性量測圖 51 圖 5.1 雙通後向寬頻譜SFS之輸出頻譜 53 圖 5.2 平均波長與輸入功率關係圖 56 圖 5.3 平均波長與1530 nm波段平均功率關係圖 57 圖 5.4 即時監控架構示意圖 58 圖 5.5 1530 nm寬頻譜光柵之反射光譜 58 圖 5.6 1530 nm寬頻譜光柵之穿透光譜 59 圖 5.7 Light Source輸入頻譜與Output 2穿透頻譜 60 圖 5.8 參考光源之1530 nm波段 60 圖 5.9 環境溫度變化下,利用OSA較精確量測平均波長與1530 nm波段平均功率之變化 62 圖 5.10 環境溫度變化下,利用OSA較精確量測平均波長與1530 nm波段平均功率之相依關係 63 圖 5.11 環境溫度變化下,利用寬頻譜光柵量測平均波長與1530 nm波段平均功率之變化 64 圖 5.12 環境溫度變化下,利用寬頻譜光柵量測平均波長與1530 nm波段平均功率之相依關係 65 圖 5.13 環境溫度變化下,利用參考光源與OSA量測平均波長與1530 nm波段平均功率之相依關係 66 表 3-1 採用高摻雜EDF(HG980 )當作吸收體之輸出 33 表 3-2 採用低摻雜EDF當作吸收體之輸出 35 表 5-1 平均波長與1530 nm波段之比較 55

    [1] 李春霖 譯,“飛行概要圖解,” 徐氏基金會, 1993.
    [2] W. J. Hesse, N. V. S. Mumford, Jr., “Jet Propulsion for Application,” 大學圖書出版社, 1981.
    [3] E. H. J. Pallett, V. Brown, “Aircraft Instruments Principles and Applications,” 滄海書局, 1972.
    [4] J. Roskan, “Airplane Flight Dynamics and Automatic Flight Controls,” 滄海書局, 1979
    [5] 張連璧,“光纖感測器,” 文笙書局, 1991.
    [6] 鄧正隆,“慣性技術,” 崧博出版, 2012.
    [7] 黃彥瑋,“干涉型光纖陀螺儀的研製及其效能探討,” 國立台灣大學光電工程學研究所碩士論文, 2009.
    [8] P.Z Zatta, and D.C Hall, , “Ultra-high-stability two-stage superfluorescent fiber sources for fiber optic gyroscopes,” Electronics Letters, vol. 38, no.9, pp. 406-408, 2002.
    [9] H.J. Patrick, A.D. Kersey, W.K. Burns, and R.P. Moeller,“Erbium-doped superfluorescent fibre source with long period fibre grating wavelength stabilisation,” Electronics Letters , vol.33, no.24, pp. 2061–2063, 1997.
    [10] 國家太空中心. (2001). Networks [Online]. Available: http:// http://www.nspo.narl.org.tw/2011/tw/projects/FORMOSAT-7/program-description.html.
    [11] P. F. Wysocki, M.J.F. Digonnet, B.Y. Kim, and H.J.Shaw, “Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor application,” Journal of Lightwave Technology, vol. 12, no.3, 1994.
    [12] T.P. Gaiffe, P. Simonpietri, J. Morisse, N. Cerre, E.M. Taufflieb, and H.C. Lefevre ,“Wavelength stabilization of an erbium-doped fiber source with a fiber Bragg grating for high-accuracy FOG,” SPIE Fiber Optic Gyros: 20th Anniversary Conference , pp. 375–380, 1996.
    [13] W. Huang, X. Wang, B. Zheng, H. Xu, C.Ye, and Z.Cai ,“Stable and wideband L-band erbium superfluorescent fiber source using improved bi-directional pumping configuration,” Optics Express, vol. 15, no.15, pp. 9778–9783, 2007.
    [14] 謝馨瑩,“摻鉺光纖光源平均波長穩定性之研究,”中原大學應用物理研究所碩士論文, 2002.
    [15] K.A. Fesler, M.J.F. Digoneet, B.Y. Kim, and H.J. Shaw,“Stable fiber-source gyroscope,” Optics Letters, vol. 15, no.22, pp. 1321-1323, 1990.
    [16] P.R. Morkel, E.M. Taylor, J.E. Townsend, and D.H. Payne,“Wavelength stability of Nd3+ -doped fibre fluorescent sources,” Electronics Letters , vol.26, no.13, pp.873-875, 1990.
    [17] R.P. Moeller, W.K. Burns, and N.J. Frigo,“Open-loop output and the scale factor stability in a fiber-optic gyroscope,” Journal of Lightwave Technology, vol. 7, no.2, pp.262-269, 1989.
    [18] J.L. Chang and M.Q. Tan,“Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes,” Journal of Semiconductors, Vol.32, no. 10,2011.
    [19] M.J.F. Digoneet, “Rare-earth-doped fiber lasers and amplifiers,”Marcel Dekker, 2001.
    [20] P.F. Wysocki, M.J.F. Digoneet, and B.Y. Kim, “Wavelength stability of a
    high-output, broadband, Er-doped superfluorescent fiber source pumped
    near 980nm,” Optics Letters, vol.16, no.12, pp.961-963, 1991.
    [21] D.C. Hall and W.K. Burns,“Wavelength stability optimization in Er3+-doped superfluorescent fibre sources,” Electronics Letters, vol.30, no.8, pp.653-654, 1994.
    [22] D.C. Hall, W.K. Burns, and R.P. Moeller, “High-stability Er3+-doped superfluorescent fibre sources,” Journal of Lightwave Technology, vol. 13, no.7, pp.1452-1460, 1995.
    [23] H. G. Park, S. C. Yun, and Y. J. Jin, “Er-doped superfluorescent fiber source with thermally Stable Mean Wavelength,” Journal of the Optical Society of Korea, vol. 13, no. 2, 2009.
    [24] A.Wang, “High stability Er-doped superfluorescent fiber Source improved by incorporating bandpass filter,” IEEE Photonics Technology Letters, vol. 23, no.4, 2011.
    [25] Y. Li, M. Jiang, C.X. Zhang, and H. J. Wu,“High stabiltiy Er-doped superfluorescent fiber source incorporating an Er-doped fiber filter and a faraday rotator mirror,” IEEE Photonics Technology Letters, vol.25, no.8, pp. 731-733, 2013.
    [26] X. Wu, L. Zhang, C. X. Liu, and S. C. Ruan,“High-stable, double-pass forward superfluorescent fiber source based on erbium-doped photonic crystal fiber,” Appl. Phys. B Laser and Optics, vol. 114, issue 3, pp 433-438, 2014.
    [27] S.A. Anson, C.H. Lange, T.C. Greening, “Fiber optic gyroscope using a narrowband FBG filter as a wavelength reference”, US Patent No. 7,227,644 B2 , issue date: 2007/06/05.
    [28] T.C. Greening, S.A. Anson, “Wavelength calibration in a fiber optic gyroscope”, US Patent no.7515271B2 , issue date: 2009/04/07.
    [29] G.A. Sanders, C.E. Laskoskie, “Fiber optic gyroscope source wavelength control”, US Patent no. 5,684,590, issue date: 1997/11/04.
    [30] Y. Yang , X. Suo , M. Yang, “Active radiation hardening technology for fiber-optic source”, Proc. of SPIE, vol. 8924, 2013.
    [31] 王祥,“線性型單縱模光纖雷射的研製,” 國立台灣科技大學電子工程研究所碩士論文, 2010.
    [32] 洪寬綸,“建構於光纖光柵之光纖雷射、光感測與光監控技術之研究,” 國立台灣科技大學電子工程研究所碩士論文, 2006.
    [33] 吳宗遠,“以複合材料補償光纖光柵因溫度造成的波長飄移之改良式機制,” 國立台灣大學機械工程學系研究所碩士論文,2003.
    [34] T. Erdogan,“Fiber Grating Spectra,” Journal of Lightwave Technology, vol. 15, no.8, pp.1277-1294, 1997.
    [35] 李彥鉦,林文欽,陳永和,魏伊文,楊慶忠,“光纖光柵的製造與應用,” 物理雙月刊,十九卷六期,第553-555頁, 1997.
    [36] 廖顯奎,鄭旭志,江家慶,林淑娟,“光纖原理與應用技術,” 五南圖書出版有限公司, 2012.
    [37] 盧彥宏,“無溫控光纖光源之設計與改良,” 國立台灣科技大學電子工程研究所碩士論文, 2013.
    [38] G. M. Williams, E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements”, IEEE Transactions on Nuclear Science, vol. 45, no. 3, 1998.
    [39] Y. Yang , X. Suo , M. Yang, “Active radiation hardening technology for fiber-optic source”, Proc. of SPIE, vol. 8924, 2013.
    [40] G. M. Williams, E. J. Friebele, “Space radiation effects on erbium-doped fiber devices: sources, amplifiers, and passive measurements”, IEEE Transactions on Nuclear Science, vol. 45, no. 3, 1998.
    [41] T. S. Rose, D. Gunn, G. C. Valley, “Gamma and proton radiation effects in erbium-doped fiber amplifiers: active and passive measurements”, Journal of Lightwave Technology, vol. 19, no. 12, 2001.
    [42] T. S. Peng, Y. W. Huang, L. A. Wang, R. Y. Liu, and F. I. Chou, “Photo-annealing effects on gamma radiation induced attenuation in erbium doped fibers and the sources using 532-nm and 976-nm lasers”, IEEE Transactions on nuclear science, vol.57, no. 4, 2010.
    [43] T. S. Peng, L. A. Wang, and R. Y. Liu, “A radiation-tolerant superfluorescent fiber source in double-pass backward configuration by using reflectivity-tuning method”, IEEE Photonics Technology Letters, vol. 23, no. 20, 2011.

    無法下載圖示 全文公開日期 2019/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE