簡易檢索 / 詳目顯示

研究生: 雷杜明
DUC - MINH LE
論文名稱: 臂頭動脈裝置支架對心臟血管主動脈弓模型的動態流場與壁面剪應力之影響
Pulsatile Flow and Wall Shear Stress in Simulated Aortic Arch with and without Stent in Brachiocephalic Artery
指導教授: 黃榮芳
Rong-fung Huang
口試委員: 許清閔
Ching Min Hsu
陳佳堃
Jia-kun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 202
中文關鍵詞: 剪應力動脈支架
外文關鍵詞: Brachiocephalic, Aorta, Shear stress.
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用質點軌跡流場觀察法與質點影像速度儀,針對一個具有三支分歧管的玻璃管,模擬人體的主動脈弓及三支分歧血管(臂頭動脈、左頸總動脈及左鎖骨下動脈)。當支架裝置於臂頭動脈時,研究主動脈弓的動態流場與壁面剪應力。為了簡化實驗複雜度,使用甘油與水的混合物作為工作流體。利用血液泵模擬心臟的脈動,每分鐘72個脈動衝程,每個衝程的流量為70毫升,每個衝程的收縮與舒張比例為45%/55%,流體溫度、Womersley parameter及時間平均雷諾數分別為37 oC、16.34及1167。在收縮與舒張過程中,觀察管內流場之時間與空間的流場結構衍化,並量測速度分佈與壁面剪應力。在收縮相位時,速度邊界層在靠近主動脈弓轉彎處分離,分離邊界層產生回流增加血小板堆積的可能性,另外,強烈的回流在舒張相位時被產生。在主動脈弓與分歧管的交接處存在小的壁面剪應力,在主動脈的外管壁存在較大的壁面剪應力。因此,動脈硬化及血管損害的潛在風險將發生在這些區域。藉由安裝支架在臂頭動脈,能夠降低壁面剪應力及縮小分離區,並且延遲不適當的流場結構形成在主動脈弓的轉彎處及主動脈弓與分歧管的交接處。此外,根據分析壁面剪應力在收縮與舒張時隨著時間的變化,安裝支架技術能夠改善血管的流體結構。


    Pulsatile in a model simulating an aortic arch with and without a stent installed in brachiocephalic were analyzed by using particle tracking flow visualization method and particle image velocimetry (PIV). The model was an U-shaped transparent glass tube with three main branches (brachiocephalic artery, left common carotid artery, and left subclavian artery). The working fluid was a mixture of water and glycerol which simulates the viscosity of blood. Pulsatile flow simulating the output of a human heart beat was supplied by a pulsatile blood pump. The initial conditions set for this study were: 72 strokes/minute (1.2 Hz) stroke rate, 70 ml/stroke volume rate, and 45%/55% of systole/diastole ratio. The temperature, Womersley parameter, and time-averaged Reynolds number were 37oC, 16.34 and 1167, respectively. The temporal/spatial evolution processes of the flow pattern, velocity distribution, and wall shear stress during systolic and diastolic phases were presented and discussed. During the systole phase, the boundary layer on the inner wall separated from the area near the turning arch where the thoracic aorta descends. The induced reverse flow increased the probability of plaque deposition while the strong reverse flow was produced in the arch during diastolic phase. The shear stress showed low values at entrance of branches and particularly high values around the outer wall of ascending and descending aorta. Hence, the potential risk of atherosclerosis and damage to vascular are easy to happen at these locations. Placing the stent in the brachiocephalic of aorta could decrease the wall shear stress at some locations, suppress size of separation region, and postpone appearance of bad flow structure in some areas along aortic arch and three main branches. Furthermore, according to the oscillation of wall shear stress with time during systole and diastole cycle due to the effect of stent, the present result was expected to be useful for further improvements in placing of stent technology in vascular.

    Abtract…………………………………………………………………….. i 中文摘要 ……………….…………………………………………………………....ii ACKNOWLEDGEMENTS ........…………………………………………………….iii TABLE OF CONTENTS……………………………………………………………..iv NOMENCLATURE…………………………………………………………………..vi TABLE CAPTIONS………………………………………………………………..viii FIGURE CAPTIONS…………………………………………………………............ix CHAPTER 1 Introduction……………………………………………………. 1 1.1 Motivation………………………………………………………… 1 1.2 Literature survey…………………………………………………... 2 1.3 Research goal…………………………………………………….. 15 CHAPTER 2 Experimental Setup and Methods……………………...………... 16 2.1 Experimental Apparatus………………………………………...………… 19 2.1.1 Pressure transducer………………………………………………… 19 2.1.2 Photoelectric Sensor……………………………………………….. 19 2.1.3 Rotameter………………………………………………………….. 20 2.1.4 Data acquisition and control system……………………………….. 20 2.2 Cardiovascular System………………………………………………….. 20 2.2.1 Water tank………………………………………………………….. 20 2.2.2 Aortic arch…………………………………………………………. .21 2.2.3 Stent………………………………………………………………… 21 2.2.4 Pulsatile blood pump……………………………………………….. 21 2.2.5 Piping system………………………………………………………. 21 2.3 Particle Characterization………………………………………...………... 22 2.4 Particle Tracking Flow Visualization Method………………….…………. 27 2.5 Particle Image Velocimetry……………………………………………….. 29 2.5.1 PIV system …………….……………………………………….. 29 2.5.2 Time-average method……………………………………………… 37 2.5.3 Phase-Resolved Ensemble-averaged method………………………. 38 CHAPTER 3 Flow Field and Wall Shear Stress of Aortic Arch without Stent (Type 1)………………………………………………... 39 3.1 Cardiac pulsed pressure wave…………………...………………………... 39 3.2 Time evolution of visualized flow ………………………………...... 40 3.3 Flow patterns and velocity distributions………………………………….. 41 3.3.1 PIV measured of flow structure………..…………………………… 42 3.3.2 Velocity distributions……………………………………...………… 44 3.4 Wall shear stress distributions……………………………………..……… 45 3.4.1 Law of wall…………………………………………………………. 47 3.4.2 Wall shear stress distributions on aorta model and its branches…….. 51 CHAPTER 4 Flow Field and Wall Shear Stress of Aortic Arch with Stent in Brachiocephalic (Type 2)…………………………………………………… 53 4.1 Cardiac pulsed pressure wave…..…………………………...………….… 53 4.2 Time evolution of visualized flow ……………………………..………… 54 4.3 Flow patterns and velocity distributions………………...………..………. 54 4.3.1 PIV measured of flow structure……………………………………. 54 4.3.2 Velocity distributions……………………………………...………… 56 4.4 Wall shear stress distributions……………………………………..……… 57 4.4.1 Law of Wall………………………………………………………… 57 4.4.2 Wall shear stress distributions on aorta model and its branches…… 58 CHAPTER 5 Comparison of Shear Stress between Empty Aorta and Stent-installed Aorta…..………………………………………...... 61 5.1 Shear stress in aortic arch……………………………………………..….. .61 5.1.1 Time-averaged wall shear stress……………………………………61 5.1.2 Maximum wall shear stress………………………………………… 62 5.1.3 Minimum wall shear stress…………………………………………. 62 5.1.4 Root mean square of wall shear stress……………………………... 63 5.2 Shear stress in branches of aortic arch…………….……………………… 63 5.2.1 Time-averaged wall shear stress…………………………………… 63 5.2.2 Maximum wall shear stress………………………………………… 64 5.2.3 Minimum wall shear stress…………………………………………. 65 5.2.4 Root mean square of wall shear stress………………...…………… 65 CHAPTER 6 Conclusions and Recommendations…………………………..……… 67 6.1 Conclusions……………………………………………………………….. 67 6.2 Recommendations………………………………………………………… 68 REFERENCES………………………………………………………………………. 69

    [1] DeBakey, M. E., Lawrie, G. M., Glaeser, D. H., “Patterns of atherosclerosis and their surgical significance,” Annals of Surgery, Vol. 201, No. 2, 1985, pp. 115-131.
    [2] Abrams, J., “Chronic sTable angina, “The New England Journal of Medicine, Vol. 352, No. 24, 2005, pp. 2524-2533.
    [3] Kim, M., Taulbee, D. B., Tremmel, M., Meng, H. “Comparison of two stents in modifying cerebral aneurysm hemodynamics,” Journal of Biomedicine Engineering, Vol. 36, No. 5, 2008, pp. 726-741.
    [4] Liou, T. M., Liou, S. N., Chu, K. L., “Intra-aneurysmal flow with helix and mesh stent placement across side-wall aneurysm pore of a straight parent vessel,” Journal of Biomechanical Engineering, Vol. 126, February 2004, pp. 36-43.
    [5] Liou, S. N., Liou, T. M., “Pulsatile flows in a lateral aneurysm anchored on a stented and curved parent vessel,” Experimental Mechanics, Vol. 44, No. 3, 2004, pp. 253-260.
    [6] Fung, G. S. k., Lam, S. K., Cheng, S. W. K., Chow, K. W., “On stent-graft models in thoracic aortic endovascular repair: acomputational investigation of the hemodynamic factors,” Computers in Biology and Medicine, Vol. 38, January 2008, pp. 484-489.
    [7] Lieber, B. B., Livescu, V., Hopkins, L. N., Wakhloo, A. K., “Particle image velocimetry assessment of stent design Influence on Intra-aneurysmal Flow,” Annals of Biomedical Engineering, Vol. 30, No. 6, 2002, pp. 768-777.
    [8] Yu, S. C. M. and Zhao, J. B., “A steady flow analysis on the stented and non-stented sidewall aneurysm models,” Medical Engineering & Physics, Vol.21, No. 3, 1999, pp. 133-141.
    [9] Yu, S. C. M., “Steady and pulsatile flow studies in Abdominal Aortic Aneurysm models using Particle Image Velocimetry,” International Journal of Heat and Fluid Flow, Vol. 21, No. 1, 2000, pp. 74-83.
    [10] Ku, D. N., “Blood flow in arteries,” Annual Review of Fluid Mechanics, Vol. 29, No. 1, 1997, pp. 399-434.
    [11] Kang, S. G., Tarbell, J. M., “The impedance of curved artery models,” J. Biomechanical Engineering, Vol. 105, August 1983, pp. 275-282.
    [12] Kjernes, M., Svindland, A., Walloe, L., Wille, S. O., “Localization of early atherosclerotic lesions in an arterial bifurcation in humans,” Acta. path. microbiol. scand. Sect. A, Vol. 89, August 1981, pp. 35-40.
    [13] Malek, A. M., Alper, S. L., Izumo, S., “Hemodynamic shear stress and its role in atherosclerosis,” Journal of the America Medical Association, Vol. 282, No. 21, 1999, pp. 2035-2042.
    [14] Nerem, R. M., Cornhill, J. F., “The role of fluid mechanics in atherogenesis,” J. Biomechanical Engineering, Vol. 102, August 1980, pp. 181-189.
    [15] Lei, M., Kleinstreuer, C., Truskey, G. A., “Numerical investigation and prediction of atherogenic sites in branching arteries,” J. Biomechanical Engineering, Vol. 117, August 1995, pp. 350-357.
    [16] Pei, Z.-H., Xi, B.-S., Hwang, H. C., “Wall shear stress distribution in a model human aortic arch: assessment by an electrochemical technique,” J. Biomechanics, Vol. 18, No. 9, 1985, pp. 645-656.
    [17] Ku, D. N., Giddens, D. P., Zarins, C. K., Glagov, S., “Pulsatile flow and atherosclerosis in the human carotid bifurcation – positive correlation between plaque location and low and oscillating shear stress,” Arteriosclerosis, Vol. 5, February 1985, pp. 293-301.
    [18] Naruse, T., Tanishita, K., “Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aortic arch,” J. Biomechanical Engineering, Vol. 118, May 1996, pp. 180-186.
    [19] Choi, U. S., Talbot, L., Cornet, I., “Experimental study of wall shear rates in the entry region of a curved tube,” J. Fluid Mech., Vol. 93, No. 3, 1979, pp. 465-489.
    [20] Singh, M. P., Sinha, P. C., Aggarwal, M., “Flow in the entrance of the aorta,” J. Fluid Mech., Vol. 87, No. 1, 1978, pp. 97-120.
    [21] Pedley, T. J., “Viscous boundary layers in reversing flow,” J. Fluid Mech., Vol. 74, No. 1, 1976, pp. 59-79.
    [22] Rodkiewicz, C. M., Kalita, W., Kennedy, J. S., Pelot, R., “On the flow field distortions due to the aortic arch twist,” J. Biomechanics, Vol. 18, No. 10, 1985, pp. 781-787.
    [23] Chandran, K. B., Yearwood, T. L., Wieting, D. W., “An experimental study of pulsatile flow in curved tube,” J. Biomechanics, Vol. 12, No. 10, 1979, pp. 793-805.
    [24] Tada, S., Oshima, S., Yamane, R., “Classification of pulsating flow patterns in curved pipes,” J. Biomechanical Engineering, Vol. 118, August, August 1996, pp. 311-317.
    [25] Yearwood, T. L., Chandran, K. B., “Experimental investigation of steady flow through a model of the human aortic arch,” J. Biomecanics, Vol. 13, April 1980, pp. 1075-1088.
    [26] Chandran, K. B., Yearwood, T. L., “Experimental study of Physiological pulsatile flow in a curved tube,” J. Fluid Mech., Vol. 111, January 1981, pp. 59-85.
    [27] Yearwood, T. L., Chandran, K. B., “Physiological pulsatile flow experiments in a model of the human aortic arch,” J. Biomechanics, Vol. 15, No. 9, 1984, pp. 683-704.
    [28] Khalighi, B., Chandran, K. B., Chen, C.-J., “Steady flow development past valve prostheses in a model human aorta–I. Centrally occluding valves,” J. Biomechanics, Vol. 16, No. 12, 1983, pp. 1003-1011.
    [29] Chandran, K. B., Cabel, G. N., Khalighi, B., Chen, C.-J., 1984. “Pulsatile flow past aortic valve bioprostheses in a model human aorta.” J. Biomechanics, Vol. 17, No. 8, pp. 609-619.
    [30] Chandran, K. B., Khalighi, B., Chen, C.-J., “Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta–I. Caged ball valves,” J. Biomechanics, Vol. 18, No. 10, 1985, pp. 763-772.
    [31] Chandran, K. B., Khalighi, B., Chen, C.-J., “Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta–II. Tilting disc valves and the effect of orientation,” J. Biomechanics, Vol. 18, No. 10, 1985, pp. 773-780.
    [32] Khalighi, B., Chandran, K. B., Chen, C.-J., “Steady flow development past valve prostheses in a model human aorta–II. Tilting disc valves,” J. Biomechanics, Vol. 16, No. 12, 1983, pp. 1013-1018.
    [33] Nandy, S., Tarbell, J. M., “Measurement of wall shear stress distal to a tri-leaflet valve in a rigid model of the aortic arch with branch flows,” J. Biomechanical Engineering, Vol. 110, August 1988, pp. 172-179.
    [34] Dean, W. R., “Note on the motion of fluid in a curved pipe,” Philos. Mag., Vol. 7, No. 4, 1928, pp. 208-223.

    [35] Adrian, R. J., “Particle-imaging techniques for experimental fluid mechanics,” Annual Review of Fluid Mech., Vol. 23, January 1991, pp. 261-304.
    [36] Keane, R. D., Adrian, R. J., “Theory of cross-correlation analysis of PIV images,” Applied Scientific Research, Vol. 49, No. 3, 1992, pp. 191-215.
    [37] Fry, D. L., “Certain Histological and Chemical Responese of the Vascular Interface to Acutely Induced Mechanical Stress in the Arota of the Dog,” circulation Rch., Vol. 24, January 1969, pp. 93-108.
    [38] Caro, C. G. Fitz-Gerald, J. M. and Schroter, R. C., “Atheroma and Arterial Wall Shear observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis,” Proc. R. Soc. Lond., Vol. 177, February 1971, pp. 109-159.
    [39] Gessner, F. B., “Hemodynamic Theories of Atherogenesis,Criculation Research,” circulation Rch., Vol. 33, No. 3, 1973, pp. 259-266.
    [40] Adams, E. W., Johnston, J. P., “Flow structure in the near-wall zone of a turbulent separated flow,” AIAA J., Vol. 26, No. 8, 1988, pp. 932-939.
    [41] Bejan. A., Convection Heat Transfer, John Wiley & Sons, New York, 1984, pp. 227-278.
    [42] Clauser, F. H., “Turbulent boundary layers in adverse pressure
    gradients,” Journal of the Aeronautical Sciences, Vol. 21, February 1954, pp.91-108.
    [43] Huang, P. G., Bradshaw, P., “Law of the wall for turbulent flows in pressure gradients,” AIAA J., Vol. 33, No. 4, 1995, pp. 624-632.
    [44] Gonzalez C. F., Cho Y. I., Ortega H. V., and Moret J., “Intracranial Aneurysms: flow analysis of their oring and progression,” America Journal of Neuroradiology, Vol. 13, No. 1, 1992, pp. 181-188.
    [45] Guo W., Liu X., Liang F., Yang D., Zhang G., Sun L., Song Q., Zhao S., and Gai L., “Transcarotid artery endovascular reconstruction of the aortic arch by modified bifurcated stent graft for Stanford Type A dissextion,” Asian Journal of Surgery, Vol. 30, No. 4, 2007, pp. 290-295.
    [46] Huang R. F., Yang T. F., Lan Y. K., “Pulsatile flows and wall-shear stresses in models simulating normal and stenosed aortic arches,” Experiments in Fluids, Vol. 48, No. 3, October 2010, pp. 497-508.
    [47] Uchida, N., Lshihara, H., Shibamura, H., Kyo, Y., Ozawa, M., “Midterm results of extensive primary repair of the thoracic aorta by means of total arch replacement with open stent graft placement for an acute Type A aortic dissection,” The Journal of Thoracic and Cardiovascular Surgery, Vol. 131, April 2006, pp. 862-867.
    [48] Flores, J., Kunihara, T., Shiiya, N., Yoshimoto, K., Matsuzaki, K., Yasuda, K., “Extensive deployment of the stented elephant trunk is associated with an increased risk of spinal cord injury,” The Journal of Thoracic and Cardiovascular Surgery, Vol. 131, No. 2, 2006, pp. 336-342.
    [49] Palmaz, J. C., Sibbitt, R. R., Reuter, S. R., Tio, F. O., Rice, W. J., “Expandable Intraluminal Graft A Preliminary Study,” Radiology, Vol. 156, November 1985, pp. 73-77.
    [50] Nichols, W. W., O’rourke, M. F., McDonald’s Blood Flow in Arteries Theroretical, Experimental and Clinical Principles, 5th edition, Hodder Arnold, London, UK, 2005.
    [51] Charonko, J., Karri, S., Schmieg, J., Prabhu, S., Vlachos, P., “In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress,” Annals of biomedical engineering, Vol. 37, 2009, pp.1310-21.
    [52] Paul, R., Apel, J., Klaus, S., Schugner, F., Schwindke, P., Reul, H., “Shear stress related blood damage in laminar couette flow,” Artificial organs, Vol. 27, 2003, pp. 517-529.
    [53] Alan, S., et al., “Heart Disease and Stroke Statistics-2013 Update,”American Heart Association, Vol. 127, December 2012, pp. 6-245.

    無法下載圖示 全文公開日期 2018/07/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE