簡易檢索 / 詳目顯示

研究生: 王俊雅
Jun-Ya Wang
論文名稱: 以信息為中心的5G網絡架構中基於SDN的預先換手
SDN-Based Pre-handover in 5G Information-Centric Networking Framework
指導教授: 金台齡
Tai-Lin Chin
口試委員: 陳永昇
Yeong-Sheng Chen
周詩梵
Shih-Fan Chou
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 40
中文關鍵詞: 5GSDN信息中心網路 (ICN)換手
外文關鍵詞: 5G, SDN, Information-centric network (ICN), Handover
相關次數: 點閱:343下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 論文將 5G 網路與 ICN 架構結合,以降低網路流量消耗,並提出基於 SDN 的預先換手方案,旨在解決 5G 網路面臨用戶數量激增時可能導致的網路效能低下和用戶移動性所帶來的挑戰。論文提出基於 SDN 的預先換手方案,詳述結合 ICN 與基於 SDN 預先換手方案的 5G 架構換手流程,提出方案利用 SDN 控制器搜集使用者設備的定位以即時更新動態資訊,並根據使用者設備的動態資訊及設備與相鄰基地台的距離倒數進行權重值加成,以此選出擁有最高權重值的相鄰基地台作為使用者設備即將換手的目標基地台。透過目標基地台事先執行換手流程中準備階段的部分工作以及預先獲得使用者設備尚未被回應需求的資料封包,待使用者設備真正進行換手時,能更快速地完成換手流程,減少換手帶來的延遲和連線中斷。實驗結果證明,結合 ICN 與 SDN 的 5G 網路架構在平均傳輸延遲、緩存命中率及平均傳遞跳數皆有更好的表現,且提出的預先換手方案能有效降低使用者設備換手對網路的影響,提高整體網路效能以及增強用戶體驗。


    This thesis integrates the 5G network with an Information-Centric Networking (ICN) architecture to decrease network traffic consumption. It introduces a pre-handover scheme based on Software-Defined Networking (SDN) to address the challenges stemming from the rapid surge in 5G network users and user mobility, possibly leading to diminished network performance. Thus, the thesis presents an SDN-based pre-handover scheme and elaborates on the handover process within the 5G architecture, amalgamating ICN and SDN pre-handover approaches. In the proposed scheme, the SDN controller captures location information from user equipment for real-time dynamic updates. Assign weight values to neighboring base stations based on dynamic information and the reciprocal distance from the user equipment. The adjacent base station with the highest weight is designated as the target for the impending handover of the user equipment. Having target base stations execute some tasks during the pre-handover setup phase and procuring data packets that the user equipment has yet to respond to can expedite the handover process when initiated by the user equipment. It helps curtail delays and connection interruptions associated with handovers. Simulation results underscore that integrating ICN and SDN within the 5G network architecture yields enhanced average transmission delay, cache hit ratio, and average delivery hops. The proposed pre-handover scheme effectively alleviates the impact of user equipment handovers on the network, elevating overall network performance and enhancing the user experience.

    致謝 I 摘要 II ABSTRACT III 目錄 IV 圖目錄 V 第一章 緒論 1 1.1研究背景 1 1.2研究動機 1 1.3論文架構 3 第二章 相關研究 4 2.1 5G 與 ICN 的網路架構差異 4 2.2 SDN-ICN之優勢 6 第三章 研究方法 9 3.1 系統架構 9 3.2 換手流程圖 12 3.3 基於 SDN 的預先換手策略 16 第四章 實驗與分析 21 4.1 實驗環境 21 4.2 實驗分析 22 第五章 結論與未來展望 28 參考文獻 29

    [1] M. Agiwal, A. Roy, and N. Saxena, “Next generation 5G wireless networks: A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617–1655, 3rd Quart., 2016.
    [2] H. Khelifi, S. Luo, B. Nour, H. Moungla, Y. Faheem, R. Hussain, and A. Ksentini, “Named data networking in vehicular ad hoc networks: State-of-the-art and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 1, pp. 320–351, 1st Quart., 2020.
    [3] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A survey on low latency towards 5G: RAN, core network and caching solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 4, pp. 3098–3130, 4th Quart., 2018.
    [4] X. Zhang and Q. Zhu, “Information-centric virtualization for software- defined statistical QoS provisioning over 5G multimedia big data wireless networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp. 1721–1738, Aug. 2019.
    [5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard “Networking named content,” Proc. 5th Int. Conf. Emerg. Netw. Experiments and Technologies, pp. 1–12. ACM, 2009.
    [6] J. M. Duarte, T. Braun, and L. A. Villas, “Receiver mobility in vehicular named data networking,” Proc. Workshop Mobility Evolving Internet Archit., pp. 43–48, Aug. 2017.
    [7] J. M. Duarte, T. Braun, and L. A. Villas, “MobiVNDN: A distributed framework to support mobility in vehicular named-data networking,” Ad Hoc Netw., vol. 82, pp. 77–90, Jan. 2019.
    [8] X. Wang and Y. Li, “Vehicular Named Data Networking Framework,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 11, Nov. 2020.
    [9] S. H. Ahmed, S. H. Bouk, M. A. Yaqub, D. Kim, H. Song, and J. Lloret, “CODIE: Controlled data and interest evaluation in vehicular named data networks,” IEEE Trans. Veh. Technol., vol. 65, no. 6, pp. 3954–3963, Jun. 2016.
    [10] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-defined networking: A comprehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.
    [11] C. Tsai, “Pre-handoff Based on SDN in the 5G System,” Master's thesis, Department of Computer Science and Information Engineering, National Chiayi University, May. 2020.
    [12] R. Jmal and L. C. Fourati, “An OpenFlow architecture for managing content-centric-network (OFAM-CCN) based on popularity caching strategy,” Comput. Standards Interfaces, vol. 51, pp. 22–29, 2017.
    [13] A. Mahmood, C. Casetti, C. F. Chiasserini, P. Giaccone, and J. Härri, “Efficient caching through stateful SDN in named data networking,” Trans. Emerg. Telecommun. Technol., vol. 29, no. 1, pp. 22–29, 2018.
    [14] G. Siracusano, S. Salsano, P. L. Ventre, A. Detti, O. Rashed, and N. Blefari-Melazzi, “A framework for experimenting ICN over SDN solutions using physical and virtual testbeds,” Comput. Netw., vol. 134, pp. 245–259, 2018.
    [15] C. Hsiao, “An Improved Handover Mechanism by Direction Prediction and Dynamic Weight Adjustment in LTE Networks,” Master's thesis, Department of Computer Science and Information Engineering, National Chung Hsing University, Jan. 21, 2014.
    [16] X. You, Z. Pan, X. Gao, and S. Cao, “The 5G mobile communication: The development trends and its emerging key techniques,” Scientia Sinica Informationis, vol. 44, no. 5, pp. 551–563, 2014.
    [17] “Study on scenarios and requirements for next generation access technologies,” 3GPP, Sophia Antipolis, France, Rep. 38.913, 2016.
    [18] B. Nour, K. Sharif, F. Li, S. Biswas, H. Moungla, M. Guizani, and Y. Wang, “A survey of Internet of Things communication using ICN: A use case perspective,” Comput. Commun., vol. 142-143, pp. 99–123, Jun. 2019.
    [19] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Resource allocation for information-centric virtualized heterogeneous networks with in-network caching and mobile edge computing,” IEEE Trans. Veh. Technol., vol. 66, no. 12, pp. 11339–11351, Dec. 2017.
    [20] I. Benkacem, M. Bagaa, T. Taleb, Q.N. Nguyen, T. Tsuda, and T. Sato, “Integrated ICN and CDN slice as a service,” Proc. IEEE Globecom Conf., 2018, pp. 1–7.
    [21] A. Lertsinsrubtavee, M. Selimi, A. Sathiaseelan, L. Cerdà-Alabern, L. Navarro, and J. Crowcroft, “Information-Centric multi-access edge computing platform for community mesh networks,” Proc. ACM SIGCAS Conf. Comput. Sustain. Soc., pp. 1–12, 2018.
    [22] R. Tourani, S. Misra, and T. Mick, “IC-MCN: An Architecture for an Information-Centric Mobile Converged Network,” IEEE Commun. Mag., vol. 54, no. 9, pp. 43–49, Sep. 2016.
    [23] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative content caching in 5G networks with mobile edge computing,” IEEE Wireless Commun., vol. 25, no. 3, pp. 80–87, Jun. 2018.
    [24] Y. Tang, “Minimizing energy for caching resource allocation in information-centric networking with mobile edge computing,” Proc. IEEE Conf. DASC/PiCom/CBDCom/CyberSciTech, pp. 301–304, 2019.
    [25] Y. Liu, A. Liu, N. N. Xiong, T. Wang, and W. Gui, “Content propagation for content-centric networking systems from location-based social networks,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 49, no. 10, pp. 1946–1960, Oct. 2019.
    [26] R. Ravindran, P. Suthar, A. Chakraborti, S. O. Amin, A. Azgin, and G. Wang, “Deploying ICN in 3GPP's 5G nextgen core architecture,” IEEE 5GWF., Jul. 2018.
    [27] A. Mahmood, C. Casetti, C. F. Chiasserini, P. Giaccone, and J. Härri, “A survey of ICN content naming and in-network caching in 5G and beyond networks,” IEEE Internet Things J., vol. 8, no. 6, pp. 4081–4104, Mar. 2021.
    [28] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A Survey of Information-Centric Networking Research,” IEEE Commun. Surveys Tuts., vol. 16, no. 2, pp. 1024–1049, 4th Quart., 2014.
    [29] Y. Zhou, F. R. Yu, J. Chen, and Y. Kuo, “Communications, caching, and computing for next generation HetNets,” IEEE Wireless Commun., vol. 25, no. 4, pp. 104–111, Aug. 2018.
    [30] Q. Zhang, X. Wang, M. Huang, K. Li, and S. K. Das, “Software defined networking meets information centric networking: A survey,” IEEE Access., vol. 6, pp. 39547–39563, Jul. 2018.
    [31] X. Zhang and Q. Zhu, “Information-centric virtualization for software-defined statistical QoS provisioning over 5G multimedia big data wireless networks,” IEEE J. Sel. Areas Commun., vol. 37, no. 8, pp. 1721–1738, Aug. 2019.
    [32] C. Liang, F. R. Yu, and X. Zhang, “Information-centric network function virtualization over 5G mobile wireless networks,” IEEE Netw., vol. 29, no. 3, pp. 68–74, May/Jun. 2015.
    [33] W. Rafique, A. S. Hafid, and S. Cherkaoui, “Complementing IoT services using software defined information centric networks: A comprehensive survey”, IEEE Internet Things J., vol. 9, no. 23, pp. 23545-23569, Dec. 2022.
    [34] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of information-centric networking,” IEEE Commun. Mag., vol. 50, no. 7, pp. 26–36, Jul. 2012.
    [35] Z. Ahmad and M. Tahir, “Named data networking (NDN) new approach to future Internet architecture design: A survey”, Int. J. Informat. Commun. Technol., vol. 2, no. 3, pp. 155-164, 2013.

    無法下載圖示
    全文公開日期 2024/08/27 (校外網路)
    全文公開日期 2024/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE