簡易檢索 / 詳目顯示

研究生: 徐偉銘
Wei-ming Hsu
論文名稱: 雙火星塞機車引擎的氣流與性能:實驗與計算分析
Flow and Performance of a Motorcycle Engine Installed with Dual Spark Plugs: Experimental and Computational Analyses
指導教授: 黃榮芳
Rong-fung Huang
口試委員: 林怡均
Yi-jun Lin
孫珍理
Chen-li Sun
張家和
Chir,ho Chang
許清閔
Ching-min Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 305
中文關鍵詞: 雙火星塞機車引擎
外文關鍵詞: Motorcycle Engine, Dual Spark Plugs
相關次數: 點閱:195下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究使用實驗與計算方法於一部雙火星塞的二閥單缸四行程250 c.c.引擎,分析缸內流場與燃燒的情況,以探討兩個火星塞點火對引擎性能的影響。使用質點影像速度儀(particle image velocimetry, PIV)量測不同進氣埠阻塞比(blockage ratio)之缸內流場旋轉運動,藉由量測分析得到的面平均渦度旋轉比及循環渦度旋轉比等量化指標,評估流場旋轉運動的強度。使用計算流體動力學(Computational Fluid Dynamics, CFD)商用軟體STAR-CD計算缸內流場,驗證實驗量測結果。實驗量化結果顯示,當進氣埠進氣埠阻塞比提高時,亦將提升循環渦度旋轉比與紊流強度。實驗與計算結果相比較,顯示實驗所量得的缸內流場演化過程與計算結果相類似,兩者循環渦度旋轉比皆有隨著進氣埠阻塞比增加而提升之趨勢,但是量化的結果卻有明顯的差異。在不同的當量比(equivalence ratio)及點火角度時,以數值方法計算單火星塞與雙火星塞引擎之性能,分析燃氣在汽缸內的燃燒過程。藉由比較缸內平均壓力、平均溫度、已燃質量分率(mass fraction burned)變化與壓力容積圖(P-v diagrams)之間的關係,探討單火星塞與雙火星塞引擎的性能。結果顯示,在固定的當量比及點火角時,雙火星塞引擎可產生較佳的燃燒反應速率、最大缸壓及輸出扭力。


A two-valve, four-stroke, motorcycle engine installed with dual spark plugs was studied using the experimental and computational methods. The particle image velocimetry (PIV) and the commercial CFD code (STAR-CD) were used to measure and calculate the in-cylinder flow evolutions, respectively. The experimental results were used to evaluate the appropriation of the strength of the in-cylinder swirl motion at various intake port blockage ratios and to validate the computational results. The quantitative results of cycle-averaged swirl numbers showed that the installation of the inlet-deflection valve enhances swirl motion and turbulence intensity. The experimental results of flow evolution process and the tendency of the cycle-averaged swirl number in the cylinder were similar to the computational results. But the swirl ratios obtained by experimental methods were significantly different from those calculated by computational methods. The P-v diagrams and performance of single and dual sparks engines during combustion processes at various equivalence ratios and ignition times were calculated by the computational analysis. The results show that the dual spark plugs engine has better reaction rate, maximum in-cylinder pressure, and output torque than the single spark plug engine as the equivalence ratio and crank angle of ignition are fixed.

摘 要 i Abstract ii 致 謝 iii 目 錄 v 符號索引 ix 表圖索引 xii 第一章 緒 論 1 1.1研究動機 1 1.2文獻回顧 2 1.3研究目的 8 第二章 實驗設備、儀器與方法 9 2.1實驗方法 9 2.1.1引擎改裝 9 2.1.2引擎潤滑油路系統改裝 10 2.1.3取像相位與座標定義 10 2.1.4實驗引擎動力來源 11 2.1.5質點的選用 12 2.2實驗設備 13 2.2.1引擎型式與規格 13 2.2.2 傳動系統 13 2.2.3編碼器 (encoder) 13 2.2.4質點植入系統 13 2.2.5 氣流偏折閥 (inlet-deflection valve) 14 2.3實驗儀器 14 2.3.1質點影像速度儀 14 2.4物理參數定義 17 第三章 計算模擬之模型與方法 20 3.1 標的引擎 20 3.1.1 引擎規格 20 3.2 計算流力軟體的簡介 20 3.3 統御方程式 22 3.3.1 紊流模式 24 3.3.2 燃燒模型 26 3.4 數值方法 28 3.4.1 離散化方程式 28 3.4.2 PISO解法理論 30 3.4.3 收斂標準 36 3.5 數值模擬 36 3.5.1 計算網格 36 3.5.2 邊界條件 38 3.5.3 初始條件 39 3.5.4 網格獨立性 39 3.5.5 取像相位與座標定義 40 3.5.6 物理參數定義 40 第四章 缸內流場量測 43 4.1循環變異與樣本次數之分析 43 4.1.1 缸內流場結構與樣本平均次數之分析 43 4.1.2 缸內任一固定點的速度與樣本平均次數之分析 44 4.1.3 速度分量沿座標軸變化與樣本平均次數之分析 44 4.2 缸內流場結構演化過程 45 4.2.1進氣埠阻塞比BR = 0 %,取像截面y = 45 mm 45 4.2.2進氣埠阻塞比BR = 0 %,取像截面y = 30 mm 47 4.2.3進氣埠阻塞比BR = 50 %,取像截面y = 45 mm 49 4.2.4進氣埠阻塞比BR = 50 %,取像截面y = 30 mm 52 4.2.5進氣埠阻塞比BR = 65 %,取像截面y = 45 mm 54 4.2.6進氣埠阻塞比BR = 65 %,取像截面y = 30 mm 56 4.2.7進氣埠阻塞比BR = 75 %,取像截面y = 45 mm 57 4.2.8進氣埠阻塞比BR = 75 %,取像截面y = 30 mm 60 4.2.9進氣埠阻塞比BR = 85 %,取像截面y = 45 mm 61 4.2.10進氣埠阻塞比BR = 85 %,取像截面y = 30 mm 64 4.3絕對紊流強度分佈與衍化過程 66 4.3.1進氣埠阻塞比BR = 0 %,取像截面y = 45 mm 66 4.3.2進氣埠阻塞比BR = 0 %,取像截面y = 30 mm 68 4.3.3進氣埠阻塞比BR = 50 %,取像截面y = 45 mm 69 4.3.4進氣埠阻塞比BR = 50 %,取像截面y = 30 mm 72 4.3.5進氣埠阻塞比BR = 65 %,取像截面y = 45 mm 73 4.3.6進氣埠阻塞比BR = 65 %,取像截面y = 30 mm 75 4.3.7進氣埠阻塞比BR = 75 %,取像截面y = 45 mm 77 4.3.8進氣埠阻塞比BR = 75 %,取像截面y = 30 mm 79 4.3.9進氣埠阻塞比BR = 85 %,取像截面y = 45 mm 81 4.3.10進氣埠阻塞比BR = 85 %,取像截面y = 30 mm 83 4.4量化分析 85 4.4.1面平均渦度旋轉比(SCA)與循環渦度旋轉比(SCA) 85 4.4.2面平均絕對紊流強度( ICA )與循環絕對紊流強度(ICA ) 86 第五章 實驗與計算結果比較 88 5.1 速度向量與流線圖 88 5.2 面平均渦度旋轉比(SCA)與循環渦度旋轉比(SCA) 88 第六章 引擎性能之計算 90 6.1 單火星塞引擎性能計算 90 6.1.1 缸內溫度於對稱面之分佈 90 6.1.2 缸內平均壓力變化 93 6.1.3 缸內平均溫度變化 94 6.1.4 缸內已燃質量分率變化 94 6.2 雙火星塞引擎性能計算 94 6.2.1 缸內溫度於對稱面之分佈 95 6.2.2 缸內平均壓力變化 97 6.2.3 缸內平均溫度變化 98 6.2.4 缸內已燃質量分率變化 99 6.3 單火星塞與雙火星塞引擎性能比較 99 6.3.1 缸內溫度於對稱面之分佈 99 6.3.2 缸內平均壓力變化 100 6.3.3 缸內平均溫度變化 101 6.3.4 缸內已燃質量分率變化 101 第七章 結論與建議 103 7.1結論 103 7.1.1缸內流場量測 103 7.1.2 引擎性能之計算 104 7.2 建議 105 參考文獻 106

[1] Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, 1999, pp. 4029-4036.
[2] 李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
[3] Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
[4] Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engines − The 1986 Freeman Scholar Lecture,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
[5] Tennekes, H. and Lumley, J. L., A First Course in Turbulence, MIT Press, Cambridge and London, 1972.
[6] Wilson, N. D., Watkins, A. J., and Dopson, C., “Asymmetric Valve Strategies and Their Effect on Combustion,” Journal of Engines, SAE Transactions-Section 3, Vol. 102, 1993, SAE 930821, pp. 1081-1092.
[7] Kent, J. C., Mikulec, A., Rimal, L., Adamczyk, A. A., Mueller, S. R., Stein, R. A., and Warren, C. C., “Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,” Journal of Engines, SAE Transactions-Section 3, Vol. 98, 1989, SAE 892096, pp. 2042-203.
[8] Endres, H., Neuβer, H.-J, and Wurms, R. “Influence of Swirl and Tumble on Economy and Emissions of Multi Valve SI Engines,” Journal of Engines, SAE Transactions-Section 3, Vol. 101, 1992, SAE 920516, pp. 942-953.
[9] Omorl, S., Iwachido, K., Motomochi, M., and Hirako, O., “Effect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Multi-Valve SI Engines,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, SAE 910477, pp. 729-740.
[10] Ekchian, A. and Hoult, D. P., “Flow Visualization Study of the Intake Process of an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979, SAE 790095, pp. 383-400.
[11] Rask, R. B., “Laser Doppler Anemometer Measurements in an Internal Combustion Engine,” Journal of Engines, SAE Transactions, Vol. 88, 1979. SAE 790094, pp. 371-382.
[12] Liou, T. M. and Santavicca, D. A. “Cycle Resolved LDV Measurements in a Motored IC Engine,” Journal of Fluids Engineering, Transactions of the ASME, Vol. 107, 1985, pp. 232-240.
[13] Nadarajah, S., Balabani, S., Tindal, M. J., and Yianneskis, M., “The Effect of Swirl on the Annular Flow past an Axisymmetric Poppet Valve,” Proceedings of the Institution of Mechanical Engineers, part C, Vol. 212, No. 6, 1998, pp. 473-484.
[14] Khaligi, B. and Huebler, M. S., “A Transient Water Analog of Dual Intake Valve Engine for Intake Flow Visualization and Full-Field Velocity Measurements,” Journal of Engines, SAE Transactions-Section 3, Vol. 97, 1988, SAE 880519, pp. 6.877-6.891.
[15] Coz, J. F. L., Henriot, S., and Pinchon P., “An Experimental and Computational Analysis of the Flow Field in a Four-Valve Spark Ignition Engine − Focus on Cycle-Resolved Turbulence,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, SAE 900056, pp. 294-321.
[16] Arcoumanis, C., Hu, Z., Vafidis, C., and Whitelaw, J. H., “Tumbling Motion: A Mechanism for Turbulence Enhancement in Spark-Ignition Engines,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, SAE 900060, pp. 375-391.
[17] Khaligi, B., “Intake-Generated Swirl and Tumble Motions in a 4-Valve Engine with Various Intake Configurations -Flow Visualization and Particle Tracking Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Part 1, Vol. 99, 1990, SAE 900059, pp. 354-374.
[18] Khalighi, B., “Study of the Intake Tumble Motion by Flow Visualization and Particle Tracking Velocimetry,” Experiments in Fluids, Vol. 10, No. 6, 1991, pp. 230-236.
[19] Ronnback, M., Le W. X., and Linna, J. R., “Study of Induction Tumble by Particle Tracking Velocimetery in a 4-Valve Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 100, 1991, SAE 912376, pp. 1824-1838.
[20] Adrian, R. J., “Particle Imaging Techniques for Experimental Fluid Mechanics,” Annual Review of Fluid Mechanics, Vol. 23, 1991, pp. 261-304.
[21] Choi, W. C. and Guezennec, Y. G., “Study of the Flow Field Development During the Intake Stroke in an IC Engine Using 2-D PIV and 3-D PTV,” Journal of Engines, SAE Transactions-Section 3, Vol. 108, 1999, SAE 1999-01-0957, pp. 1447-1459.
[22] Lee, J. and Farrel, P. V., “Intake Valve Flow Measurements of an IC Engine Using Particle Image Velocimetry,” Journal of Engines, SAE Transactions-Section 3, Vol. 102, 1993, SAE 930480, pp. 629-647.
[23] Valentino, G., Kaufman, D., and Farrel, P. V., “Intake Valve Flow Measurements Using PIV,” Journal of Fuels and Lubricants, SAE Transactions-Section 4, Vol. 102, 1993, SAE 932700, pp. 1156-1175.
[24] Gharakhani, A. and Ghoniem, A. F., “3D Vortex Simulation of Intake Flow in a Port-Cylinder with a valve Seat and a Moving Piston,” Journal of Engines, SAE Transactions-Section 3, Vol. 105, 1996, SAE 9961195, pp. 1627-1639.
[25] Freek, C., Hentschel, W., and Merzkich, W., “High Speed PIV − A Diagnostic Tool for IC-Engines,” Proceedings of the Eighth International Symposium on Flow Visualization, 1998, pp. 185.1 -185.10.
[26] Richter, M., Axelsson, B., Alden, M., Josefsson, G., Carlsson, L-O., Dahlberg, M., Nisbet, J., and Simonsen, H. “Investigation of the Fuel Distribution and the In-cylinder Flow Field in a Stratified Charge Engine Using Laser Techniques and Comparison with CFD-Modelling,” Journal of Fuels and Lubricants, SAE Transactions-Section 4, Vol. 108, 1999, SAE 1999-01-3540, pp. 1652-1663.
[27] Reeves, M., Towers, D. P., Tavender, B., and Buckberry, C. H., “A High-Speed All-Digital Technique for Cycle-Resolved 2-D Flow Measurement and Flow Visualization within SI Engine Cylinders,” Optics and Lasers in Engineering, Vol. 31, October 1999, pp. 247-261.
[28] Cao, Z.-M., Nishino, K., Mizuno, S., and Torii, K., “PIV Measurement of Internal Structure of Diesel Fuel Spray,” Experiments in Fluids (Suppl.), 2000, S211-S219.
[29] Zolver, M., Klahr, D., and Torres, A., “An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation,” Journal of Engines, SAE Transactions-Section 3, Vol. 111, 2002, SAE 2002-01-1120, pp. 1919-1929.
[30] Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, SAE 2003-01-0002, pp. 21-28.
[31] Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, SAE 2004-32-0004, pp. 1710-1714.
[32] Huang, R. F., Huang, C. W., Chang, S. B., Yang, H. S., and Hsu, W. Y., “Topological Flow Evolutions in Cylinder of a Motored Engine During Intake and Compression Strokes,” Journal of Fluids and Structures, Vol. 20, January 2005, pp. 105-127.
[33] 林岱衛, 不同進氣道設計的四行程單缸引擎缸內流場與紊流特性的 PIV診測, 國立台灣科技大學機械工程研究所碩士論文, 2004。
[34] 楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程研究所碩士論文, 2004。
[35] 林冠旭, 增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測, 國立台灣科技大學機械工程研究所碩士論文, 2006。
[36] Papageorgakis, G., Assanid, D. N., “Optimizing gaseous fuel-air mixing in direct injection engines using an RNG based k-ε model,” Journal of Engine, SAE Transactions-Section 3, Vol. 107, 1998, SAE 980135. pp. 82-107.
[37] Arcoumanis, C., Godwin, S. N., and Kim, J. W., “Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 107, 1998, SAE 981044, pp. 1547-1562.
[38] Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T., and Ando, H., “Development of Gasoline Direct Injection Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 106, 1997, SAE 970541, pp. 777-793.
[39] Warsi, Z. U. A., “Conservation Form of the Navier-Stokes Equations in General Nonesteady Coordinates,” AIAA Journal, Vol. 19, No. 2, 1981, pp. 240-242.
[40] Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
[41] Kurniawan, W. H, Abdullah, S., Shamsudeen, A., “A computational fluid dynamics study of cold-flow analysis for mixture preparation in a motored four-stoke direct injection engine, ” Journal of Applied Science 7, Vol. 19, 2007, pp. 2710-2724.
[42] 游耀鴻, 內燃機缸內氣流滾轉及旋轉運動最佳化技術, 國立台灣科技大學機械工程研究所碩士論文, 2011。
[43] Flagan, R. C. and Seinfied, J. H., Fundamentals of Air Pollution Engineering, Prentice Hall, Englewood Cliffs, NJ, 1988, pp. 295-307.
[44] Keane, R. D. and Adrian, R. J., “Theory of Cross-Correlation Analysis of PIV Images,” Applied Scientific Research, Vol. 49, No. 3, 1992, pp. 191-215.
[45] Keane, R. D. and Adrian, R. J., “Optimization of Particle Image Velocimeter Part I: Double Pluse System.” Measurements Science and Technology, Vol. 1, No. 11, 1990, pp. 1202-1215.
[46] Hart, D. P. “Super-resolution PIV by recursive local-correlation,” Journal of Visualization, Vol. 10, No. 1, 1999, pp. 1-10.
[47] 尤嘉宏, 進氣埠受氣流偏折閥調制之引擎缸內流場與引擎性能的相關性: PIV量測技術的開發與應用, 國立台灣科技大學機械工程研究所碩士論文, 2005。
[48] 林政諺, 二閥四行程機車引擎瞬間流場與岐管噴油特性的計算與實驗分析, 國立台灣科技大學機械工程研究所碩士論文, 2012。

無法下載圖示 全文公開日期 2018/06/12 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE