簡易檢索 / 詳目顯示

研究生: 葉俊杉
Chun-Shan Yeh
論文名稱: 含咵唑-喹咢啉液晶基團之玻璃性柱狀型液晶化合物和1,4-二氮苯及9,10-二氮蒽為核心之盤狀液晶化合物之合成與性質研究
Synthesis and Characterization of Glass forming Columnar Liquid Crystals containing Oxadiazole and Biquinoxaline Moietes and Phenzine-,Quino xaline- Derived discatic Liquid Crystals
指導教授: 廖本瑞
Ben-Ruey Liaw
口試委員: 張美濙
Mei-Ying Chang
許應舉
Y.G. Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 134
中文關鍵詞: 盤狀液晶
外文關鍵詞: discotic liquid crystals
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

第一系列化合物2,3,2',3'-四{4-[5(3,4,5-三烷氧苯基)-1,3,4-咵唑-2-基]苯基}-6,6'-喹咢啉DBN-3Cn 2,3,2',3'-四{4-[5-(3,4-二烷氧苯基)-1,3,4-咵唑-2-基]苯基}-6,6'-喹咢啉DBN2Cn 2,3,2',3'-四{4-[5(,4-烷氧苯基)-1,3,4-咵唑-2-基]苯基}-6,6'-喹咢啉 DBN1C8 由和1,2-二{4-[5-(3,4,5-三烷氧苯基)-1,3,4-咵唑-2-基]苯基}乙烷-1,2-二酮(1) 1,2-二{4-[5-(3,4-二烷氧苯基)-1,3,4-咵唑-2-基]苯基}乙烷-1,2-二酮(2) 1,2-二{4-[5-(4-烷氧苯基)-1,3,4-咵唑-2-基]苯基}乙烷-1,2-二酮(3)nj縮合反應而成,並在末端位置接上不同長度之烷氧柔軟基(n=3, 5, 6, 8, 10).這些化合物的分子結構皆經由1H NMR, 13C NMR, FT-IR, AA 及MALD/TOF光譜儀鑑定,並利用DSC, POM 及X-ray繞射鑑定其相變化及液晶相.發現DBN-3C3和DBN-2C3沒有液晶相,而其他DBN-3Cn 和DBN-2Cn (n=4, 5, 6, 8,10)為六角柱狀排列(Col h ).DBN-1C8也沒有液晶相的產生.在DSC第一次冷卻時可發現,DBN-2Cn系列的液晶均向轉移溫度(Ti)的範圍為183~227℃,玻璃轉移溫度(Tg)的範圍為138~154℃.DBN-3Cn系列的液晶均向轉移溫度(Ti)的範圍為151~218℃,玻璃轉移溫度(Tg)的範圍為103~153℃.
第二系列及第三系列中,以兩個不同核心1,4-氮萘及9,10-二氮蒽為主體,2,3-二[3,4-二烷氧苯基]-6,7-[3,4-二烷氧苯基] 1,4-氮萘, 2BN-Cn (n = 4, 6, 7, 8, 9, 10)和2,3,5-四[3,4-二烷氧苯基] 9,10-二氮蒽, N-Cn(n = 5, 6, 8, 9, 10, 11), 側鏈基團為柔軟烷氧基.利用DSC, POM 及X-ray繞射鑑定其相變化及液晶相.利用波長為λ = 1.3332 Å做X-ray繞射實驗,由此波長算出2BN-C10在100℃柱狀矩型晶格的參數為a = 58.10 Å及 b = 30.09 Å,另一方面,N-C5在80℃時,發現在低角度有一根很尖銳的峰。由X-ray照相中,在低角度範圍可發現二個環,比例為1:√3在六角結晶面分別為(100)和(110),其晶格參數為a = 41.4 Å。


Compounds 2,3,2',3'-Tetrtakis{4-[5-(3,4,5-tris(alkyloxy)phenyl)-1,3,4
oxadiazol-2-yl]phenyl}-6,6'-biquinoxaline DBN-3Cn ,2,3,2',3'-Tetrtakis
{4-[5-(3,4-bis(alkyloxy)phenyl)-1,3,4-oxadiazol-2-yl]phenyl}-6,6'-biquinoxaline DBN-2Cn , Tetrtakis{4-[5-(4-mono(alkyloxy)phenyl)-1,3,4-oxad
iazol-2-yl]phenyl}-6,6'-biquinoxaline DBN-1C8 are readily synthesized form biphenyl-3,4,3',4'-tetraamine and 1,2-Bis{4-[5-(3,4,5-tris(alkyloxy)
phenyl)-[1,3,4]oxadazol-2-yl]phenyl}ethane-1,2-dione(1),1,2-Bis{4-[5-(3,4,-di(alkyloxy)phenyl)-[1,3,4]oxadazol-2-yl]phenyl}ethane-1,2-dione(2), 1,2-Bis{4-[5-(octyloxyphenyl)-[1,3,4]oxadazol-2-yl]phenyl}ethane-1,2-dione(3), derivatives of diffenent length tails(n=3, 5, 6, 8 and 10),as shown in Scheme Ⅰ.the identities of theses homologs were verified by 1H and 13C NMR spectroscopy, FT-IR spectroscopy, andelemental analysis or M
ALD/TOF mass spectroscopy. The mesogenic behavior of homologs DB
N-3Cn ,DBN-2Cn and DBN-1C8was investigated by a combination of DSC, POM, and variable temperature X-ray-diffraction. The two shor
test homologs DBN-3C3 and DBN2C3 do not exhbit any mesogenic behaviour, whereas compoumds DBN-3Cn and DBN-2Cn wuth flexibe side length (n=4, 5, 6, 8, and10) showed welldefined hexagonal colum
mar mesophases(Col h ). In contrast to the corresponding double- and triple-chain derivatives (DBN-3Cn and DBN-2Cn) the single-chain DBN-1C8 (n=8) is not mesomrphic. The Col h phase of DBN-2Cn exhi
bited isotropic temperature (120~200℃) and glass transition temperature (130~200℃), whereas DBN-3Cn exhibited isotropic temperature (120~
200℃) and glass transition temperature (130~200℃) as determined by DSC on first cooling.

Moreover, two novel homologous series of novel disotic liquid crystals based on the heterocyclic cores of quinoxalin and phenazine- 2,3,6,7-
Tetrakis-(3,4-bis- butyloxy -phenyl)-quinoxaline, 2BN-Cn (n=4, 6, 7, 8, 9, 10) and 2,3,5-tetrakis[3,4-di(alkyloxy)phenyl]phenazines, N-Cn (n=5, 6, 8, 9, 10, 11), where n is the carbon number of peripheral alkyl sidechain
, had been synthesized (SchemeⅣ and SchemeⅤ). Mesomorphic behave
iours were chacterized by DSC, POM and X-ray difftaction. The x-ray diffraction pattern of syncroton radiation (=13332Å) by 2BN-C10(n=10) at 100℃ has reflections that indexed to a rectangular lattice with parameter a=58.10 Å and b=30.09Å, resulting from a disrottion of the lattic. On the other hand, for N-C8(n=8), the diffractogram at 80℃ is dominated by a single sharp peak at low angle, diagonosticod colummar assemblies. The low-angle region of the pattern contained a set of two rings in a reciprocalspacing ratio 1:√3. these maximum are indexed, respectively as the(10) and (11) reflections from the two-dimensinal hexagonal lattice and a lattic constant a=A.

目 錄 中文摘要 英文摘要 誌謝 目錄 List of Scheme List of Figure List of Table 第一章 緒論 1.1 前言……………………………………………………… 1 1.2 液晶簡介……………………………………………….... 2 1.3 液晶分類………………………………………………… 3 1.4 盤狀液晶分子集合狀態及結構………………………… 8 1.5 液晶化合物的化學構成及性質…………… ………… 10 1.6 液晶相之鑑定….…………………………………………13 1.7 研究的動機……………………………………………….16 第二章 實驗 2.1 藥品………………………………………………………20 2.2 合成方法…………………………………………………26 第三章 研究結果 3.1 液晶分子之合成與鑑定……………………..…… ..64 3.2 液晶相之鑑定與其物性之探討……………….70 3.3 X-ray之探討…………………………………………….72 3.4 光學性質之探討………………………………………. .73 第四章 討論……………………………………………………...109 第五章 總結………………………………………………………115 參考資料………………………………………………………………116 List of Scheme Scheme Ⅰ The synthesis of DBN3C-n…………………………21 Scheme Ⅱ The synthesis of DBN2C-n…………………………22 Scheme Ⅲ The synthesis of DBN1C-n…………………………23 Scheme Ⅳ The synthesis of 2NB-Cn…………………………...24 Scheme Ⅴ The synthesis of N-Cn………………………………25 List of Figure Fig.1-1 Schematic representation of Nematic…….…………….4 Fig.1-2 Schematicrepresentationof Cholesteric………………...5 Fig.1-3 Schmatic representation of Smectic………………..…..5 Fig.1-4 Schematic representation of smectic mesophases……...7 Fig.1-5 ubclassification of discotic liquid crystalls according to molecular agregation…………………..…………….8 Fig.1-6 Characterization of discotic liquid crystals……………. 9 Fig.1-7 Characterization of discotic liquid crystals……………. 9 Fig.1-8 Characterization discotic liquid crystalls……. ……..… .11 Fig.1-9 Characterization discotic liquid crystalls……. ……..… .12 Fig.1-10 Characterization discotic liquid crystalls……. ……..… .19 Fig.3.1-1 MS ofompound1,2-Bis{4-[5-(3,4,5-tris(pentyloxy) phenyl)-[1,3,4]oxadazol-2-yl]phenyl}ethane -1,2-dion.......………………………………………….....44 Fig.3.1-2 IRspectrumofcompound1,2-Bis{4-[5-(3,4,5-tris(pentyloxy) phenyl)-[1,3,4]oxadazol-2-yl]phenyl}ethane-1,2-dione…..45 Fig.3.1-3 MS of compound2,3,2',3'-Tetrtakis{4-[5-(3,4,5-tris(pentyloxy) phenyl)-1,3,4-oxadiazol- 2-yl]phenyl}-6,6'-biquinoxaline...46 Fig.3.1-4 1H MNR of compound2,3,2',3'-Tetrtakis{4-[5-(3,4,5-tris (pentyloxy)phenyl)-1,3,4-oxadiazol-2-yl]phenyl}-6,6' -biquinoxaline……………………………………………47 Fig.3.1-5 13C MNR of compound2,3,2',3'-Tetrtakis{4-[5-(3,4,5-tris (pentyloxy)phenyl)-1,3,4-oxadiazol-2-yl]phenyl}-6,6'- biquinoxaline……………………………………………48 Fig.3.1-6 IR of compound2,3,2',3'-Tetrtakis{4-[5-(3,4,5-tris (pentyloxy)phenyl)-1,3,4-oxadiazol- 2-yl]phenyl}-6,6'- biquinoxaline……………………………………………..49 Fig.3.1-7 MS of compound 1,2-bis{4-[5-3,4-bis(pentyloxy)phenyl ] -[1,3,4]oxadazol-2-yl}phenyl}ethane-1,2-dione…………50 Fig.3.1-8 IR of compound 1,2-bis{4-[5-3,4-bis(pentyloxy)phenyl ] -[1,3,4]oxadazol-2-yl}phenyl}ethane-1,2-dione…………51 Fig.3.1-9 IR of compound 3,4-di(pentyloxy) phenylboronic acid …………………………………………………………..52 Fig.3.1-10 IR of compound4',5'-Dinitro-3,4,3'',4''-tetrakis-octyloxy- [ 1,1';2',1'']terphenyl………………………..…………..53 Fig.3.1-11 MS of compound 2,3,6,7-Tetrakis-(3,4-bis- butyloxy -phenyl)-quinoxaline……………………………………54 Fig.3.1-12 1H NMR of compound 2,3,6,7-Tetrakis-(3,4-bis- butyloxy -phenyl)-quinoxaline……………………………………55 Fig.3.1-13 13C NMR of compound 2,3,6,7-Tetrakis-(3,4-bis- butyloxy -phenyl)-quinoxaline……………………………………..56 Fig.3.1-14 IR of compound 2,3,6,7-Tetrakis-(3,4-bis- butyloxy -phenyl)-quinoxaline…………………………………..57 Fig.3.1-15 IR of compound 2,3,5,6-Tetrakis-(3,4-dimethoxy -phenyl)-pyrazine………………………………………..58 Fig.3.1-16 IR of compound 2,3,5,6-Tetrakis-(3,4-dimethoxy -phenyl)-pyrazine…………………………………………59 Fig.3.1-17 MS of compound 2,3,5,6-Tetrakis-(3,4-bis-pentyloxy -phenyl)-pyrazine……………………………………... ..60 Fig.3.1-18 1H NMR of compound2,3,5,6-Tetrakis-(3,4-bis-pentyl oxy-phenyl)-pyrazine…………………………………...61 Fig.3.1-19 13C NMR of compound 2,3,5,6-Tetrakis-(3,4-bis-Penty loxy-phenyl)-pyrazine…………………………………..62 Fig.3.2-1 DSC thermograms for DBN3C4………………………….76 Fig.3.2-2 DSC thermograms for DBN3C5…………………………..76 Fig.3.2-3 DSC thermograms for DBN3C6…………………………..77 Fig.3.2-4 DSC thermograms forDBN3C10……..…………………...77 Fig.3.2-5 Polarized optical micrograph of DBN3Cn,cooled from the isotropicphase……………………………………..…….78 Fig.3.2-6 DSC thermograms for DBN2C4…………………………..80 Fig.3.2-7 DSC thermograms forDBN2C5…………………………80 Fig.3.2-8 DSC thermograms for DBN2C6…...................................81 Fig.3.2-9 DSC thermograms for DBN2C8…………………………81 Fig.3.2-10 DSC thermograms for DBN2C10………………………..82 Fig.3.2-11 Polarized optical micrograph of DBN2Cn,cooled from the isotropic phase………………………………………….83 Fig 3.2-12 DSC thermograms for 2NB-C6…………………………..85 Fig 3.2-13 DSC thermograms for 2NB-C7…………………………..85 Fig 3.2-14 DSC thermograms for 2NB-C8…………………………...86 Fig 3.2-15 DSC thermograms for 2NB-C9…………………………...86 Fig.3.2-16 Polarized optical micrograph of 2NB-Cn,cooled from the isotropic phase……………………………………………..87 Fig 3.2-17 DSC thermograms for N-C5………………………………89 Fig 3.2-18 DSC thermograms for N-C6………………………………89 Fig 3.2-19 DSC thermograms for N-C8………………………………90 Fig 3.2-20 DSC thermograms for N-C9………………………………90 Fig 3.2-21 DSC thermograms for N-C10……………………………..91 Fig 3.2-22 DSC thermograms for N-C11……………………………..91 Fig.3.2-16 Polarized optical micrograph of N-Cn,cooled from the isotropic phase……………………………………………..92 Fig.3.3-1 X-ray diffraction pattern of DBN3C5 at 150℃…………..94 Fig.3.3-2 X-ray diffraction pattern of DBN3C5 at 100℃………..…94 Fig.3.3-3 X-ray diffraction pattern of 2NB-10C at 100℃…………..95 Fig.3.3-4 X-ray diffraction pattern of 2NB-10C at 80℃….……..….95 Fig.3.3-5 X-ray diffraction pattern of 2NB-7C at 100℃……………96 Fig 3.3-6 X-ray diffraction pattern of 2NB-4C at 100℃……………96 Fig 3.3-7 X-ray diffraction pattern of N8C at 30℃…………………97 Fig 3.3-8 X-ray diffraction pattern of N8C at 80℃…………………97 Fig.3.4-1 Absorption and photoluminescent spectra of DBN3C4…..99 Fig.3.4-2 Absorption and photoluminescent spectra of DBN3C10...100 Fig.3.4-3 Absorption and photoluminescent spectra of DBN2C4….101 Fig.3.4-4 Absorption and photoluminescent spectra of DBN2C10...102 Fig.3.4-5 Absorption and photoluminescent spectra of 2NB-4C…..103 Fig 3.4-6 Absorption and photoluminescent spectra of 2NB-10C....104 Fig 3.4-7 Absorption and photoluminescent spectra of N-C5……...105 Fig 3.4-8 Absorption and photoluminescent spectra of N-C8……..106 Fig.4-1 Dependence of the transition temperture(Ti,Tg) on n, the number of carbons on alkoxy group of for the series of discotic liquid crystalline DBN3Cn(n=4,5,6,8,10) ………111 Fig.4-2 Dependence of the transition temperture(Ti,Tg) on n, the number of carbonson alkoxy group of for the series of discotic liquid crystallineBDN2Cn(n=4,5,6,8,10) …….…112 Fig.4-3 Dependence of the transition temperture(Ti,Tm,Tc) on n, the number of carbons on alkoxy group of for the series of discotic liquid crystalline 2NB-Cn (n=4,6,7,8,9,10) …….113 Fig.4-4 Dependence of the transition temperture(Ti,ΔH) on n, the number of carbons on alkoxy group of for the series of discotic liquid crystallineNCn(n=5,6,8,9,10,11)……..…...114 List of Table Table 3.2-1 Thermal transitions and thermodynamic parameters of DBN3C-n……………………………………………...75 Table 3.2-2 Thermal transitions and thermodynamic parameters of DBN2C-n………………………………………………79 Table 3.2-3 Thermal transitions and thermodynamic parameters of 2BN-Cn………………………………………………...84 Table 3.2-4 Thermal transitions and thermodynamic parameters of N-Cn……………………………………………………88 Table 3.3-1 The X-ray by 2BN-Cn has reflection that indexed to arectangular lattice with a and b(λ=1.3332Å)…………...93 Table 3.4-1 Photoluminescent and absorption of DBN3Cn…………..98 Table 3.4-2 Photoluminescent and absorption of DBN2Cn…………..98 Table 3.4-3 Photoluminescent and absorption of 2NB-nC…………..103 Table 3.4-4 Photoluminescent and absorption of 2NB-nC…………..106

參考資料
1. Mori, H, Jpn,J, Appl,Phys.,36,1068(1997)
2.Miyahsita, T. Yamaguchi, Y.Uchida,T. Jpn.T, Appl.Phys.,part2.,34(A)
,177. (1977)
3.Chandrasekhar, S. Sadashiva, B. K. , Suresh, K.A.Pramana., 9,471(1977)
4.吳龍海, 許千樹, Chemistry, 56, 1, 57-64.(1998)
5.中田一郎, 堀文衣著, 液晶的製法與應用,幸書房.
6.松本正一, 角田市良著, 劉瑞祥譯, 液晶之基礎與應用,國立編譯館.
7.K. Praefcke, B. Kohne, K. Gutbier, N. Johnen, D. Singer, Liq.Cryst. 5,253.(1989)
8.H. Finkelmann and G. Rehage , “Adv. Polym. Sci.” , 60/61 , 99 (1984).
9.H. Finkelmann, H. Wendorff, H. Ringsdorf, Makromol. Chem., 179, 273(1978)
10.H. Ringsdrof , H. Finkelmann , M. Happ , M. Portugal, Makomol Chem., 179 , 2541 (1978).
11.許千樹 , 謝昌志 , Chemistry., 47(3) , 228 (1989).
12.H. Finkelmann , “Angew. Chem. , Int. Ed. Engl.” , 26 , 816 (1987).
13.J. B. Stamatoff , U. S. P. 4694 ,66 (1987).
14.G. Ortler , C. Brachle , A. Miller , G. Ripel , Makromol. Chem. , Rapid Commun. , 10 , 189 (1989).
15.Thomas Christ, Birgrit glusen, Andreas Greiner, Andreas Kettner, Roland Sander, Volker Stumpflen, Vladrimir Tsukruk, and Joachim H. Wendorf, Adv. Mater., 9,48(1997)
16.Schnichi Tanaka, Chihaya Adachi, Toshiki Koyama, and Yoshio Taniguchi, Chem. Lett., 975(1998)

17.D. Adam, P.Schuhmacher, J. Simmerer, L. Haussling, K. Siemensmeyer, K.H. Etzbach, H. Ringsdorf and D. Haarer, Nature 371, 141(1994)
18.N. Boden, R. J. Bushby, J. Clements and B. Movaghar, J. Mater. Chem., 9,2081(1999)
19.D. O’rien, M. S. Weaver, D. G. Lidzey, D. C. Bradley, Appl. Phys. Lett. 69, 881-883(1996)
20.H. Schurmann, N. Koch, P. Imperia, S. Schrader, M. Landke, P. Strohriegl, Brehmer, Synth. Metals, 102, 1069(1999)
21.丁清華,許千樹,化工技術,第10卷第11期,2002年11月號
22.M. Thelekkat, R. Fink, P. Posch, J. Ring. H.-W. Schmidt, Polm. Paper., 38, 323(1997)
23. E. Keinan, S. Kumar, S. P. Singh, R. Girlando and E. J. Wachtel, Liq. Cryst., 11, 157(1993)
24.N. Boden, Ruth C. Borner, R. J. Bushby and J. Clements, J. Am. Chem. Soc., 116, 10807(1994)
25.H. Tokuhisa, M. Era and T. Tsutsui, Chem. Lett., 303(1997)
26.H. Tokuhisa, M. Era and T. Tsutsui, Adv. Mater. 10(5), 404(1998)

無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE