簡易檢索 / 詳目顯示

研究生: 黃于真
Yu-Jhen Huang
論文名稱: 超音波調控吸附Minoxidil之溶菌酶微氣泡穴蝕效應促進毛髮生長效果之研究
Evaluation of the hair growth enhancements with ultrasound-mediated minoxidil-loaded lysozyme microbubbles cavitation
指導教授: 廖愛禾
Ai-Ho Liao
口試委員: 王智弘
Chih-Hung Wang
江建平
Chien-Ping Chiang
沈哲州
Che-Chou Shen
廖愛禾
Ai-Ho Liao
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 超音波溶菌酶微氣泡對比劑Minoxidil毛髮生長穴蝕效應
外文關鍵詞: Ultrasound, Lysozyme Microbubble, Minoxidil, Hair follicle, Cavitation
相關次數: 點閱:411下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年研究中發現超音波結合吸附 Minoxidil 之白蛋白微氣泡可加強藥物促生髮效果,但白蛋白微氣泡對於皮膚過敏反應是個隱憂,且白蛋白微氣泡市面上也較少用於經皮穿透,而本研究中,提供了一種新型超音波微氣泡對比劑之藥物釋放載體,利用超音波導入結合溶菌酶微氣泡對比劑,將溶菌酶微氣泡對比劑表面吸附一層 Minoxidil (Mx),為了減少Mx對於皮膚副作用,也將溶劑改良成水溶液製劑,而溶菌酶是一種知名的抗菌劑,在近期文獻上發現其具有促進毛髮生長的功效,且其抗菌效果可抑制頭皮分泌油脂所滋生的細菌,又相較於白蛋白為較弱過敏原,然而超音波特殊的穴蝕效應不僅可以打開表皮通透度,進而增加表皮與皮下組織細胞之藥物吸收,能有效加速生長期毛囊生長。
    以正負電荷吸附使Mx吸附於溶菌酶微氣泡 (LyzMBs) 表面形成Mx之溶菌酶微氣泡 (Mx-LyzMBs),透過 DLS 量測粒徑與電位、in vitro與 in vivo (n=5),動物實驗組別主要以 (1) 控制組 (Control)、(2) 單純施打超音波能量 (US)、(3) 施打超音波能量於溶菌酶微氣泡 (US+LyzMBs)、(4) 施打超音波能量於溶菌酶微氣泡混合Mx溶液 (US+LyzMBs+Mx)、(5) 施打超音波能量於吸附Mx之溶菌酶微氣泡 (US+Mx-LyzMB)。
    經吸附Mx之溶菌酶微氣泡,其粒徑大小隨吸附時間及比例不同而改變,單純溶菌酶微氣泡與吸附 Mx之溶菌酶微氣泡 (比例2:1,吸附時間 2 hr) 依序為 2.4 ± 0.14 µm、4.3 ± 0.70 µm;表面電位則依序為 58.6 ± 2.65 mV、39.0 ± 1.09 mV;溶菌酶微氣泡吸附Mx的吸附率為 20.3 %;以 FITC 觀察經皮穿透由施打超音波能量於溶菌酶為氣泡後經 6 hr 深度可達 1267.3 µm,利用透析方式觀察藥物釋放,在 1 hr 時釋放效果可達 37.9 %;利用 Activity Assay Kit 及免疫組織化學染色 (IHC) 相互檢測溶菌酶經皮穿透效果,在超音波能量施打於溶菌酶微氣泡經 6 hr 測得活性有 65.8 µU/ml 而 18 hr 後皮膚內的溶菌酶活性達到 118.5 µU/ml;而毛囊組織培養中發現 US+Mx-LyzMBs 組在培養第 2 天成長幅度為最大 (108.18 µm),有最快促使生長之顯著效果 (p<0.001);動物實驗中 US+Mx-LyzMBs 組相較 C 組提早 2 天進入生長期,在第 12 天也有明顯的生長效果,綜合以上結果超音波結合吸附 Mx 之溶菌酶微氣泡的方法能改善局部脫髮症狀 (Alopecias),促進毛髮生長及提前進入生長期。


    In our previous study, a new type of Minoxidil (Mx) coated albumin shelled microbubbles (AMBs) and combined with ultrasound energy in the water phase was demonstrated to enhance hair growth. However, skin allergy was concerned by using AMBs. Lysozyme (Lyz) is a safe adjunct to antifungals and could be used to improve acne treatment due to its antibactericidal effect. Recently, Lyz was found to stimulate hair follicle growth. In this study, a new minoxidil coated Lyz shelled microbubble was produced to inhibit bacterium or the allergy caused in oil scalp. Moreover, the potential of Mx coated Lyz shelled MBs combine with US either to enhance hair follicle growth or to promote transdermal drug delivery was investigated.
    The in vitro and in vivo experimental parameters was randomly divided into five groups (n=5 animals per group): (1) no treatment (Control), (2) US treatment alone (US), (3) US combines with LyzMBs (US+LyzMBs), (4) US combines with LyzMBs and penetrating Mx (US+LyzMBs+Mx), (5) US combines with Mx-LyzMBs (US+Mx-LyzMBs).
    Mx grafted with LyzMBs (mean diameter of 2400 ± 140 nm) were synthesized into self-assembled complexes of Mx-LyzMBs that had mean diameters of 4300 ± 700 nm, respectively. The zeta potentials of LyzMBs and Mx-LyzMBs were 58.6 ± 2.65 mV and 39.0 ± 1.09 mV, respectively. The loading efficiency of Mx on cationic LyzMBs was 20.3%. In vitro skin permeation studies have demonstrated the ability of US-mediated Mx-LyzMBs cavitation to act on FITC was 1267.3 µm when the FITC solution was left for 6 hours in the histology sections. In Franz diffusion experiments performed in vitro, the release rates increased 37.9 % at 1 hour. Biological activity of lysozyme in skin were determined by activity assay kit and immunohistochemistry (IHC) and expression, and activities in group US+Mx-LyzMBs were 65.8 µU/ml and 118.5 µU/ml at 6 hr and 18 hrs, respectively. In hair follicle cell culture experiments, the growth of hair follicle cells were enhanced significantly in US+Mx-LyzMBs group at 2th day (p<0.001). For the in vivo experiments, the Mx-LyzMBs would be expected to promote hair growth more rapidly than control group and reduced the treatment dose and side effects. The results confirm that US combined with Mx-LyzMBs can significantly enhance hair growth in water without requiring the use of any chemical enhancement method to increase the penetrating of Mx and Lyz in skin.

    中文摘要 i ABSTRACT ii 誌 謝 iii 目 錄 vi 圖目錄 x 表目錄 xiii 第1章、緒論 1 1.1 皮膚結構生理學 1 1.1.1 表皮層 (Epidermis) 2 1.1.2 真皮層 (Dermis) 3 1.1.3 皮下組織 (Subcutaneous tissue) 4 1.1.4 皮膚附屬器官-毛囊 (Hair follicle) 4 1.2 經皮輸送藥物系統 (Transdermal drug delivery) 6 1.3 常用藥物經皮穿透方法 8 1.3.1 化學滲透促進劑 (Chemical penetration enhancers, CPE) 8 1.3.2 離子導入法 (Iontophoresis) 8 1.3.3 超音波 (Ultrasound) 9 1.3.4 微針 (Microneedle) 10 1.4 超音波傳輸機制 10 1.4.1 超音波簡介 (Ultrasound) 10 1.4.2 診斷型超音波 (Diagnostic medical ultrasound) 11 1.4.3 治療型超音波 (Therapeutic ultrasound) 11 1.5 超音波微氣泡對比劑 12 1.6 超音波結合微氣泡藥物傳輸機制 14 1.7 穴蝕效應 (Cavitation) 15 1.7.1 穩態穴蝕效應 (Stable cavitation) 15 1.7.2 慣性穴蝕效應 (Inertial cavitation) 16 1.8 溶菌酶之簡介及應用 17 1.8.1溶菌酶 (Lysozyme) 17 1.8.2 溶菌酶微氣泡相關研究 19 1.9 Minoxidil簡介 19 1.9.1 Minoxidil發展 19 1.9.2 藥理作用 20 1.9.3 脫髮症 (Alopecia) 20 1.10 研究動機 23 第2章、材料與方法 24 2.1 研究架構 24 2.2 藥品與設備 25 2.2.1 藥品 25 2.2.2 設備 26 2.3 表面吸附Minoxidil之溶菌酶微氣泡製作 27 2.4 溶菌酶微氣泡與吸附Minoxidil溶菌酶微氣泡之性質分析 28 2.4.1 粒徑分析 28 2.4.2 介面電位 29 2.4.3 濃度量測 30 2.4.4 雙束型聚焦離子束顯微鏡拍攝 30 2.5 溶菌酶微氣泡對比劑影像系統分析 31 2.6 溶菌酶微氣泡結合率與微氣泡吸附效率之評估 32 2.6.1 定性分析 32 2.6.2定量分析 32 2.7 螢光染劑模擬藥物於豬耳皮之穿透深度 34 2.8 體外藥物釋放實驗 35 2.8.1 於透析袋模擬酸鹼環境之釋放效果 35 2.8.2 豬耳皮膚模擬藥物經皮穿透 36 2.8.3 豬皮內皮藥物含量分析 37 2.9 體外釋放實驗之溶菌酶活性含量分析 38 2.9.1 酶活性測試 38 2.9.2 免疫組織化學染色 (IHC) 40 2.10 超音波能量結合吸附Minoxidil之溶菌酶微氣泡於促進小鼠毛囊組織生長實驗 41 2.11 超音波能量結合吸附Minoxidil之溶菌酶微氣泡於小鼠皮膚促進毛髮生長實驗 43 2.11.1 動物實驗 43 2.11.2 組織切片 43 2.12 影像處理 45 2.12.1 影像分析 45 2.12.2 二值化及閥值運算 45 2.13 超音波導入系統 46 2.14 統計分析 46 第3章、實驗結果 47 3.1 溶菌酶微氣泡與吸附Minoxidil溶菌酶微氣泡之性質 47 3.1.1 粒徑分析 47 3.1.2 電位分析 48 3.1.3 濃度分析 49 3.1.4 聚焦離子束顯微鏡 50 3.2 溶菌酶微氣泡對比劑影像系統分析 51 3.3 溶菌酶微氣泡結合率與微氣泡吸附效率之評估 52 3.3.1 定性分析 52 3.3.2 定量分析 53 3.4 螢光染劑模擬藥物於豬耳皮之穿透深度 55 3.5 體外藥物釋放實驗 56 3.5.1 於透析袋模擬酸鹼環境之釋放效果 56 3.5.2 豬耳皮膚模擬藥物經皮穿透 57 3.5.3 豬皮內皮藥物含量分析 58 3.6 體外釋放實驗之溶菌酶活性含量分析 59 3.6.1 酶活性檢測 59 3.6.2 豬皮皮內溶菌酶活性含量分析 60 3.6.3 免疫組織化學染色 (IHC) 61 3.7 超音波能量結合吸附 Minoxidil 之溶菌酶微氣泡於促進小鼠毛囊組織生長實驗 62 3.8 超音波能量結合吸附 Minoxidil 之溶菌酶微氣泡於小鼠皮膚促進毛髮生長實驗 64 3.8.1 毛髮生長狀況 64 3.8.2 色度儀分析 66 3.8.3 組織切片 67 第4章、討論 69 第5章、結論 73 參考文獻 74

    [1] 方嘉佑,「皮膚深度之旅:經皮輸藥不用打針」,科技部精選專題,長庚大學天然藥物研究所,桃園,2006。
    [2] Boundless, “Structure of the Skin: Dermis.”, Boundless Anatomy and Physiology, 5, 1, 2016.
    [3] Boundless, “Structure of the Skin: Epidermid.”, Boundless Anatomy and Physiology, 5, 1, 2016.
    [4] A. Baroni, E. Buommino, and V. D. Gregorio et al., “Structure and function of the epidermis related to barrier properties.”, Clinics in Dermatology, 30(3), 257-262, 2012.
    [5] K. Suehiro, N. Morikage, and M. Murakami et al., “Skin and Subcutaneous Tissue Strain in Legs with Lymphedema and Lipodermatosclerosis.”, Ultrasound in Medicine & Biology, 41, 6, 1577-1583, 2015.
    [6] H. Schaefer, and TE. Redelmeier, “Skin Barrier: Principles of Percutaneous Absorption.”, Archives of Dermatological, 133(7), 924, 1997.
    [7] J. Teumer, and J. Cooley, “Follicular Cell Implantation: An Emerging Cell Therapy for Hair Loss.”, Seminars in Plastic Surgery, 19, 2, 2005.
    [8] Y. Milner, J. Sudnik, and M. Filippi et al., “Exogen, Shedding Phase of the Hair Growth Cycle: Characterization of a Mouse Model.”, Journal of Investigative Dermatology, 639-644, 2002.
    [9] G. S. Choi, “Hair characteristics and androgenetic alopecia in Koreans.”, Journal of the Korean Medical Association, 56(1), 45-54, 2013.
    [10] “Hair Follicle.”, Smallcollation, Online Available: https://smallcollation.blogspot.tw/2013/10/hair-follicle.html#gsc.tab=0
    [11] G. Tiwari, R. Tiwari, and B. Sriwastawa et al., “Drug delivery systems: An updated review.”, Pharmaceutical Investigation, 2(1), 2-11, 2012.
    [12] J. Lia, W. Xub, and Y. Lianga, et al., “The application of skin metabolomics in the context of transdermal drug delivery.”, Pharmacological Reports, 69, 2, 252-259, 2017.
    [13] S. Jung, N. Otberg, and G. Thiede et al., “Innovative Liposomes as a Transfollicular Drug Delivery System: Penetration into Porcine Hair Follicles.”, Journal of Investigative Dermatology, 126(8), 1728-1732, 2006.
    [14] R. Chourasia and SK. Jain, “Drug targeting through pilosebaceous route.”, Current drug targets, 950-967, 2009.
    [15] GM. Gelfuso, T. Gratieri, and PS. Simão et al., “Chitosan microparticles for sustaining the topical delivery of minoxidil sulphate.”, Journal of microencapsulation, 650-658, 2011.
    [16] R. J. Scheuplein, “Mechanism of percutaneous absorption: II. Transient diffusion and the relative importance of various routes of skin penetration.”, Journal of Investigative Dermatology, 48, 63-70, 1967.
    [17] T. Rutherford and JG. Black, “The use of autoradiography to study the localization of germicides in skin.”, British Journal of Dermatology. 1969:81, 75–87.
    [18] Y. Chen, P. Quan , and X. Liu et al., “Novel chemical permeation enhancers for transdermal drug delivery.”, Asian Journal of Pharmaceutical Sciences, 9, 2, 51-64, 2014 .
    [19] U. Jacobi, M. Kaiser, and R.Toll et al., “Porcine ear skin: an in vitro model for human skin.”, Skin Research and Technology, 13,19-24, 2007.
    [20] L.A.D. Silva, S.F. Taveira, and E.M. Lima et al., “In vitro skin penetration of clobetasol from lipid nanoparticles: drug extraction and quantitation in different skin layers.”, Brazilian Journal of Pharmaceutical Sciences, 48, 4, 2012.
    [21] K. Vávrová and A. Hrabálek, “Amino Acid-Based Transdermal Penetration Enhancers.”, Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Modification of the Stratum Corneum, Springer-Verlag Berlin Heidelberg, 20, 325-336, 2015.
    [22] FL. Bamba, and J. Wepierre, “Role of the appendageal pathway in the percutaneous absorption of pyridostigmine bromide in various vehicles.” European Journal of Drug Metabolism and Pharmacokinetics, 18, 339-348, 1993.
    [23] A. Jadoul, J. Bouwstra, and V. Préat, “Effects of iontophoresis and electroporation on the stratum corneum Review of the biophysical studies.”, Advanced Drug Delivery Reviews, 35, 1, 4, 89-105, 1999.
    [24] SM. Silva, L. Hu, and JJ. Sousa et al., “Michniak-Kohn BB. A combination of nonionic surfactants and iontophoresis to enhance the transdermal drug delivery of ondansetron HCl and diltiazem HCl.”, European Journal of Pharmaceutics and Biopharmaceutics, 80, 3, 663-673, 2012.
    [25] B. Zorec, V. Préat, and D. Miklavčič1 et al., “Active enhancement methods for intra- and transdermal drug delivery: a review.”, Zdrav Vestn, 82, 339-56, 2013.
    [26] AH. Liao, HY. Chou, and YL. Hsieh et al., “Enhanced Therapeutic Epidermal Growth Factor Receptor (EGFR) Antibody Delivery via Pulsed Ultrasound with Targeting Microbubbles for Glioma Treatment.”, Journal of medical and biological engineering, 156-164, 2015.
    [27] NB. Smith, “Perspectives on transdermal ultrasound mediated.”, International Journal of Nanomedicine, 2, 4, 585-594, 2007.
    [28] R. Langer, “Where a pill won’t reach?”, Scientific American, 288, 50-57, 2003.
    [29] W. Snehal, K. Nitin A, and D. Rekha et al., “Microneedle Advance Drug Delivery System.”, Journal of Pharmaceutical Research, 3(12), 2013.
    [30] Y. Ami, H. Tachikawa, and N. Takano et al., “Formation of polymer microneedle arrays using soft lithography.”, Journal of Micro/Nanolithography, MEMS, and MOEMS, 10(1), 2011.
    [31] 王修含,「超音波傳遞速率:聲音速度與介質的關係皮膚科」,專題報導,台大醫院皮膚科,台北,2012。
    [32] 李嘉明、李玉華,「新超音波醫學1:醫用超音波的基礎」,合計圖書出版社,新北,2003。
    [33] “Ultrasound”, New World Encyclopedia, Online Available: http://www.newworldencyclopedia.org/entry/Ultrasound , 2016.
    [34] 陳思嘉,「靶向超音波於血栓溶解之研究」,碩士論文,國立台灣大學電機資訊學院生依電子與資訊學研究所,台北,2009。
    [35] 王修含,「診斷與治療用途的醫用超音波(超聲波)簡介」,專題報導,台大醫院皮膚科,台北,2013。
    [36] 王嘉弘,「高頻超音波驅動電路設計在生醫應用之研究」,碩士論文,國立暨南國際大學生物醫學科技研究所,南投,2006。
    [37] DA. Christensen, “Ultrasonic Bioinstrumentation.”, Journal of Biomedical Engineering, 11, 1988.
    [38] LD. Johns, “Nonthermal Effects of Therapeutic Ultrasound: The Frequency Resonance Hypothesis.” Journal of Athletic Training, 37(3), 293-299, 2002.
    [39] JJ. Kaufman, H. Popp, and A. Chiabrea et al., “The effect of ultrasound on the electrical impedance of biological cells.”, IEEE engineering in medicine & biology society 10th annual international conference, 2, 6, 753-754, 1988.
    [40] D. Levy , J. Kost, and Y. Meshulam et al., “Effect of ultrasound on transdermal drug delivery to rats and guinea pigs.”, Journal of Clinical Investigation, 83, 2, 2074-2078, 1989.
    [41] A. Tezel, A. Sens, and J. Tuchscherer et al., “Synergistic effect of low frequency ultrasound and surfactants on skin permeability.”, Journal of Pharmaceutical Sciences, 91, 1, 91-100, 2002.
    [42] B. Robert, P. Larry, and L. Eldon et al., “Evaluation of the Effectiveness and Safety of Ultrasound-Guided Percutaneous Carpal Tunnel Release: A Cadaveric Study.”, American Journal of Physical Medicine & Rehabilitation, 96 ,7 ,457-463, 2017.
    [43] G. R. Ter Haar, “High intensity focused ultrasound for the treatment of tumors.”, Echocardiography: A Journal of Cardiovascular Ultrasound & Allied Techniques, 18, 4, 317-322, 2001.
    [44] G. Ter Haar, D. Sinnett, and I. Rivens, “High intensity focused ultrasound-a surgical technique for the treatment of discrete liver tumours.”, Physics in Medicine & Biology, 34, 11, 1743-1750,1989.
    [45] Z. Izadifar, P. Babyn, and D. Chapman, “Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge.”, Ultrasound in Medicine and Biology, 43, 6,1085-1104, 2017.
    [46] 謝依峻,「組織背景抑制於諧波對比劑偵測」,碩士論文,國立台灣科技大學電機工程系,台北,2008。
    [47] N. N. Byl, A. McKenzie, and T. Wong et al., “Incisional Wound Healing: A Controlled Study of Low and High Dose Ultrasound.”, Journal of Orthopaedic & Sports Physical Therapy, 18(5), 619-628, 1993.
    [48] S. Sirsi and M. Borden, “Microbubble Compositions, Properties and Biomedical Applications.”, Bubble Science, Engineering & Technology, 1(1-2), 3-17, 2009.
    [49] G. Decher, “Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites.” Science, 277, 5330, 1232-1237, 1997.
    [50] S. Tinkov, R. Bekeredjian, and G. Winter et al., “Microbubbles as ultrasound triggered drug carriers.”, Journal of Pharmaceutical Sciences, 98, 6, 1935-61, 2009.
    [51] J. R. Lindner, and K. Wei, “Contrast Echocardiography.”, Current Problems in Cardiology, 27(11), 454-519, 2002.
    [52] S. R. Sirsi and M. A. Borden “Advances in Ultrasound Mediated Gene Therapy Using Microbubble Contrast Agents.”, Theranostics, 2(12), 1208-1222, 2012.
    [53] R. Geoff, DH. Lockwood, and DA. Turnbull et al., “A 40-100 MHz B-scan Ultrasound backscatter skin imaging.”, Ultrasound in Medicine & Biology, 21, 1, 79-88, 1995.
    [54] C. Passmann and H. Ermert, “Adaptive 150MHz Ultrasound Imaging of the Skin and the Eye using an Optimal combination of Shor Pulse Mode and Pulse Compression Mode.”, IEEE Ultrasonics Symposium, 186, 173-176, 1995.
    [55] DA. Knspik, B. Starkoski, and CJ. Pavlin et al., “A 100-200 MHz Ultrasound Biomicroscope.”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 47, 6, 1540-1549, 2000.
    [56] I. Lentacker, S.C. De Smedt and N.N. Sanders, “Drug loaded microbubble design for ultrasound triggered delivery.”, The Royal Society of Chemistry, 5, 2161-2170, 2009.
    [57] 王鴻偉,「使用三倍頻發射相位法對比劑諧波影像」,碩士論文,國立台灣科技大學電機工程系,台北,2008。
    [58] FS. Foster, CJ. Pavlin, and KA. Harasiewicz et al., “Advances in Ultrasound Biomicroscopy.”, Ultrasound in Medicine & Biology, 26, 1, 1-27, 2000.
    [59] M. J. K. Blomley, J. C. Cooke, and E. C. Unger et al., “Microbubble contrast agents: a new era in ultrasound.”, British Medical Journal, 322, 2001.
    [60] S. Meairs and A. Alonso, “Ultrasound, microbubbles and the blood–brain barrier.”, Progress in Biophysics and Molecular Biology, 93, 354-362, 2007.
    [61] C.Y. Ting, CH. Fan, and HL. Liu et al., “Concurrent bloodebrain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment.”, Biomaterials , 33, 704-712, 2012.
    [62] T. D. Khokhlova, Y. Haider, and J. H. Hwang, “Therapeutic potential of ultrasound microbubbles in gastrointestinal oncology: recent advances and future prospects.”, Therapeutic Advances Gastroenterology, 8(6), 384-394, 2015.
    [63] C. H. Su, Y. J. Wu, and H. H. Wang et al., “Nonviral gene therapy targeting cardiovascular system.”, American Journal of Physiology. Heart and Circulatory Physiology, 303, H629-H638, 2012.
    [64] P. F. Sharp and R. Whitaker, “The relation of the hydrogen ion concentration of egg white to its germicidal action.”, Journal of Bacteriology, 14(1), 17-46, 1927.
    [65] K. Meyer, R. Thompson, and J. W. Palmer et al., “The purification and properties of lysozyme.”, Journal of Biological Chemistry, 113, 303-309, 1936.
    [66] A. Hindenburg, J. Spitznagel, and N. Arnheim, “Isozymes of Lysozyme in Leukocytes and Egg White: Evidence for the Species-Specific Control of Egg-White Lysozyme Synthesis.”, PProceedings of the National Academy of Sciences, 71, 5, 1653-1657, 1974.
    [67] M. O. Ogundele, “A novel anti-inflammatory activity of lysozyme: modulation of serum complement activation.”, Mediators of inflammation, 7.5, 363-365, 1998.
    [68] P. L. Huang, Y. Sun, and H. C. Chen et al., “Proteolytic fragments of anti-HIV and anti-tumor proteins MAP30 and GAP31 are biologically active.”, Biochemical and biophysical research communications, 262.3, 615-623, 1999.
    [69] A. Oevermann, M. Engels, and U. Thomas, “The antiviral activity of naturally occurring proteins and their peptide fragments after chemical modification.”, Antiviral research, 59.1, 23-33, 2003.
    [70] G. P. Gorbenko, V. M. Ioffe, and P. K. Kinnunen, “Binding of lysozyme to phospholipid bilayers: evidence for protein aggregation upon membrane association.”, Biophysical journal, 93.1, 140-153, 2007.
    [71] J. L. Parrot, and G. Nicot, “Antihistaminic action of lysozyme.”, Nature, 197, 496, 1963.
    [72] G. Sava, V. Ceschia, and S. Pacor et al., “Observations on the antimetastatic action of lysozyme in mice bearing Lewis lung carcinoma.”, Anticancer research, 11.3, 1109-1113, 1990.
    [73] H. R. Ibrahim, T. Aoki, and A. Pellegrini, “Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules.”, Current pharmaceutical design, 8.9, 671-693, 2002.
    [74] D. R. Hoffman, “Immunochemical identification of the allergens in egg white.”, Journal of Allergy and Clinical Immunology, 71(5), 481-6, 1983.
    [75] A. Iaconelli, L. Fiorentini, and S. Bruschi et al., “Absence of allergic reactions to egg white lysozyme additive in Grana Padano cheese.”, Journal of the American College of Nutrition , 27(2), 326-31, 2008.
    [76] R. Pérez-Calderon, MA. Gonzalo-Garijo, and A. Lamilla-Yerga et al., “Recurrent Angioedema Due to Lysozyme Allergy.”, J Investig Allergol Clin Immunol, 17(4), 264-266, 2007.
    [77] M. Shimizu, JK. Losos, and AM. Gibbins, “Analysis of an approach to oviduct-specific expression of modified chicken lysozyme genes.”, Biochemistry and Cell Biology, 83(1), 49-60, 2005.
    [78] R. Varman, “Investigation of Effect of Chemical Skin Penetration Enhancers on Stability and Biological Activity of Proteins.”, Natural Sciences, 31-36, 2011.
    [79] K. K. Ossowska, M. Cwieka, and A. Kaczynska et al., “Lysozyme adsorption at a silica surface using simulation and experiment: effects of pH on protein layer structure? ”, Physical Chemistry Chemical Physics, 17, 24070-24077, 2015.
    [80] Y. Su, H. Liu, and J. Wang, B. Lin et al., “Antimicrobial peptide lysozyme has the potential to promote mousehair follicle growth in vitro.”, Acta Histochemica , 117, 798-802, 2015.
    [81] “Hen Egg-White (HEW) Lysozyme: Composition and Structure of Lysozyme.”, Proteopedia, Online Available: http://proteopedia.org/wiki/index.php/Lysozyme.
    [82] N. Schneider and M. Pischetsrieder “lysozyme allergen in cheese and potential impact on health.”, Human Health Handbooks, 6 , 765-780, 2013.
    [83] F. Cavalieri, M. Ashokkumar, and F. Grieser et al., “Ultrasonic synthesis of stable, functional lysozyme microbubbles.”, Langmuir, 24 (18), 10078-10083, 2008.
    [84] S. Melino, M. Zhou, and M. Tortora et al., “Molecular properties of lysozyme-microbubbles: towards the protein and nucleic acid delivery.”, Amino Acids, 43, 885-896, 2012.
    [85] M. Zhou, F. Cavalieri, and M. Ashokkumar, “Modification of the size distribution of lysozyme microbubbles using a post-sonication technique.”, Instrumentation Science & Technology, 40.1, 51-60, 2012.
    [86] M. A. Novak, and J. S Meyer, “Alopecia: Possible Causes and Treatments, Particularly in Captive Nonhuman Primates.”, Comparative Medicine, 59, 1, 18-26, 2009.
    [87] J.L. Burton, and A. Marshall, “Hypertrichosis due to minoxidil.”, British Journal of Dermatology, 593-595, 1979.
    [88] VC. Weiss, PW. Dennis, and EM. Catherine, “Topical minoxidil in alopecia areata.”, Journal of the American Academy of Dermatology, 224-226, 1981.
    [89] V. De, and L. Richard, “Topical minoxidil therapy in hereditary androgenetic alopecia.”, Archives of dermatology, 197-202, 1985.
    [90] M. Duvic, NA. Lemak, and V. Valero et al., “A randomized trial of minoxidil in chemotherapy-induced alopecia.”, Journal of the American Academy of Dermatology, 74-78, 1996.
    [91] A. G. Messenger, and J. Rundegren, “Minoxidil: mechanisms of action on hair growth.”, British journal of dermatology, 186-194, 2004.
    [92] M. N. Pereira, H. L. Schulte, and N. Duarte et al., “Solid effervescent formulations as new approach for topical minoxidil delivery.”, European Journal of Pharmaceutical Sciences, 96, 411-419, 2017.
    [93] G.M. Gelfuso, T. Gratieri, and M.B.D. Charro et al., “Iontophoresis-Targeted, Follicular Delivery of Minoxidil Sulfate for the Treatment of Alopecia.”, Journal of Pharmaceutical Sciences, 102, 5, 2013.
    [94] M. J. Gomes, S. Martins, and D. Ferreira et al., “Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies.”, International journal of nanomedicine, 1231, 2014.
    [95] J. Marcus, “Androgen receptor.”, Wikioedia the free encyclopedia, Online Available: https://en.wikipedia.org/wiki/Androgen_receptor.
    [96] 「雄性禿-雄性禿掉髮」,髮源國際有限公司,台北,取自: http://hb168.pixnet.net/blog/post/1482383,2011。
    [97] 蔡呈芳,「認識落髮、掉髮」,台大醫院皮膚科,取自: http://blog.xuite.net/tfdacos/wretch/149709734-認識落髮、掉髮,2013。
    [98] I. Urysiak-Czubatka, M. L. Kmieć, and G. Broniarczyk-Dyła, “Assessment of the usefulness of dihydrotestosterone in the diagnostics of patients with androgenetic alopecia.” Postepy Dermatologii I Alergologii Journal, 4, 207-215, 2014.
    [99] E. Bednar, “What is the normal cycle of hair growth and loss?”, Bednar Hair Restoration, Online Available: https://hairreplacementcharlotte.com/about-hair-loss/.
    [100] 「認識雄性禿」,醫髮診所,取自: http://www.2h.com.tw/h.htm.
    [101] A. Dejan, “Dynamic light scattering and application to proteins in solutions.” Dynamic Light Scattering Theory, 2-18, 2010.
    [102] Malvern Instruments Ltd, “Zeta Potential theory.”, Zetasizer Nano Series User Manual, 16, 16.1-16.12, 2004.
    [103] M. Sezen, “Focused Ion Beams (FIB)-Novel Methodologies and Recent Applications for Multidisciplinary Sciences.”, Modern Electron Microscopy in Physical and Life Sciences, 6, 122-140, 2016.
    [104] M. Delees, “How to Have Healthy Hair.”, Online Available: http://www.menscuts.com/healthyhair.htm, 2010-2013.
    [105] P. J. Park, B. S. Moon, and S. H. Lee et al., “Hair growth-promoting effect of Aconiti Ciliare Tuber extract mediated by the activation of Wnt/β-catenin signaling.”, Life Sciences, 91, 935-943, 2012.

    QR CODE