簡易檢索 / 詳目顯示

研究生: TRAN THUY TUYET MAI
TRAN THUY TUYET MAI
論文名稱: Influences of MOISTURE on ROOM TEMPERATURE CO OXIDATION over Au/BN catalysts
Influences of MOISTURE on ROOM TEMPERATURE CO OXIDATION over Au/BN catalysts
指導教授: 林昇佃
Shawn D. Lin
口試委員: 林昇佃
Shawn D. Lin
江志強
Jyh-Chiang Jiang
劉端祺
Tuan-Chi Liu
萬本儒
Ben-Zu Wan
鄭淑芬
Soofin Cheng
葉君棣
Chuin-Tih Yeh
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 120
中文關鍵詞: Au/BN catalyst*OOH species*CO(H2O)n specieswater co-catalyst
外文關鍵詞: Au/BN catalyst, *OOH species, *CO(H2O)n species, water co-catalyst
相關次數: 點閱:211下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Metal oxide supported gold catalysts readily catalyze CO oxidation at sub-ambient temperature, wherein moisture can influence the activity typically with a volcano-shape dependence. The abundant OH density on metal oxide surface hinders the study of how moisture may influence the CO oxidation over Au catalysts. In this work, we use hexagonal Boron Nitride (h-BN), a hydrophobic material, as the support for gold catalyst to study room temperature CO oxidation with various partial pressure of water (PH2O). A deposition method was conducted for preparing 1wt%Au/BN. Two commercial h-BN supports are compared and the effect of pretreatment conditions is examined for understanding the observed moisture-enhanced catalytic activity.
The first strategy of this work is using spectroscopic methods to explore roles of water co-catalyst with Au/BN in RT CO oxidation. Au/BN catalyst shows a quick increasing CO oxidation with increase of moisture concentration upto 100% relative humidity (RH). How water can enhance RT CO oxidation over Au/BN is found related to intermediate species of hydroperoxyl (*OOH) and CO(H2O)2 complex upon O2-H2O and CO-H2O cofeedings, respectively. Injection of isotope labeled H218O demonstrates that OH from H2O takes part in the process of CO2 formation and proton transfer to oxygen leading production of CO2.
The second focus in this work is the effect of calcination conditions on water adsorption behaviors and catalyst activity in RT CO oxidation over Au/BN. Ex situ XPS analysis demonstrates only metallic gold (Au0) dominated on Au/BN1 and Au/BN2 after calcination at temperatures from 300 to 600oC, with the exception of Au/BN1-300 and Au/BN2-600. The existence of Au+ (plus charged gold) on Au/BN1-300 and Au/BN2-600 presents less active CO oxidation in nominal dry and wet conditions. Increasing calcination temperature results in increase of both physisorption and chemisorption of water on Au/BN1 and Au/BN2, which can be described by Henry’s model and non-dissociative Langmuir model, respectively. This suggests that H2O adsorbs probably at the interface between Au and BN and that COad on Au surface may interact with the adsorbed H2O to form CO-(H2O)n and *OOH species. That also regards to the significant enhancement of moistened RT CO oxidation over Au/BN at elevated calcination temperature. Experimental evidences in this section indicates the interfacial perimeter of Au/BN is involved in the activation of CO and O2.
The third achievement of this work examines the nature of active site on Au/BN catalyst. We examined how an additional H2 treatment at 300oC influence Au/BN1-600, Au/BN2-450 and Au/BN2-600. Only Au0 governed on Au/BN1 and Au/BN2 as proven by in situ DRIFTS of dry CO adsorption. Only a slight increase in nominal dry CO oxidation activity was found over Au/BN after the additional H2 treatment. The catalytic activity of wet RT CO oxidation is almost the same over Au/BN1-600 with/without the additional H2 treatment. However, a noticeable increase in wet CO oxidation rate over Au/BN2-600 was found after H2 treatment. This suggests that Au0 is more likely the active phase than Au+ in water co-feed RT CO oxidation over Au/BN.
Another contribution of this work is to propose a possible mechanism that is consistent with the spectroscopic data and the kinetic data. The kinetic study was performed by varying space velocity and concentration of CO, O2 and H2O and then the kinetic data was reported. The reaction order on CO, O2 and H2O was found as 0.5 - 0.9, 0.5 – 0.5, and 0.6 – 1.5, respectively, which are not much influenced by catalyst pretreatment and type of BN (exception of H2O reaction order of 0.3 and 1.04 for Au/BN2-600 and Au/BN2-600-H2, respectively). A mechanism with good species balance is proposed which may explain how water acts as a co-catalyst in RT CO oxidation over Au/BN. Au0 is the surface site for COad and O2ad while the interface of Au-BN involved the sites for molecular H2Oad. CO(H2O)n complex is formed from the interaction between COad and H2Oad and the rate-determining step is the reaction between CO(H2O)n and O2ad.


Metal oxide supported gold catalysts readily catalyze CO oxidation at sub-ambient temperature, wherein moisture can influence the activity typically with a volcano-shape dependence. The abundant OH density on metal oxide surface hinders the study of how moisture may influence the CO oxidation over Au catalysts. In this work, we use hexagonal Boron Nitride (h-BN), a hydrophobic material, as the support for gold catalyst to study room temperature CO oxidation with various partial pressure of water (PH2O). A deposition method was conducted for preparing 1wt%Au/BN. Two commercial h-BN supports are compared and the effect of pretreatment conditions is examined for understanding the observed moisture-enhanced catalytic activity.
The first strategy of this work is using spectroscopic methods to explore roles of water co-catalyst with Au/BN in RT CO oxidation. Au/BN catalyst shows a quick increasing CO oxidation with increase of moisture concentration upto 100% relative humidity (RH). How water can enhance RT CO oxidation over Au/BN is found related to intermediate species of hydroperoxyl (*OOH) and CO(H2O)2 complex upon O2-H2O and CO-H2O cofeedings, respectively. Injection of isotope labeled H218O demonstrates that OH from H2O takes part in the process of CO2 formation and proton transfer to oxygen leading production of CO2.
The second focus in this work is the effect of calcination conditions on water adsorption behaviors and catalyst activity in RT CO oxidation over Au/BN. Ex situ XPS analysis demonstrates only metallic gold (Au0) dominated on Au/BN1 and Au/BN2 after calcination at temperatures from 300 to 600oC, with the exception of Au/BN1-300 and Au/BN2-600. The existence of Au+ (plus charged gold) on Au/BN1-300 and Au/BN2-600 presents less active CO oxidation in nominal dry and wet conditions. Increasing calcination temperature results in increase of both physisorption and chemisorption of water on Au/BN1 and Au/BN2, which can be described by Henry’s model and non-dissociative Langmuir model, respectively. This suggests that H2O adsorbs probably at the interface between Au and BN and that COad on Au surface may interact with the adsorbed H2O to form CO-(H2O)n and *OOH species. That also regards to the significant enhancement of moistened RT CO oxidation over Au/BN at elevated calcination temperature. Experimental evidences in this section indicates the interfacial perimeter of Au/BN is involved in the activation of CO and O2.
The third achievement of this work examines the nature of active site on Au/BN catalyst. We examined how an additional H2 treatment at 300oC influence Au/BN1-600, Au/BN2-450 and Au/BN2-600. Only Au0 governed on Au/BN1 and Au/BN2 as proven by in situ DRIFTS of dry CO adsorption. Only a slight increase in nominal dry CO oxidation activity was found over Au/BN after the additional H2 treatment. The catalytic activity of wet RT CO oxidation is almost the same over Au/BN1-600 with/without the additional H2 treatment. However, a noticeable increase in wet CO oxidation rate over Au/BN2-600 was found after H2 treatment. This suggests that Au0 is more likely the active phase than Au+ in water co-feed RT CO oxidation over Au/BN.
Another contribution of this work is to propose a possible mechanism that is consistent with the spectroscopic data and the kinetic data. The kinetic study was performed by varying space velocity and concentration of CO, O2 and H2O and then the kinetic data was reported. The reaction order on CO, O2 and H2O was found as 0.5 - 0.9, 0.5 – 0.5, and 0.6 – 1.5, respectively, which are not much influenced by catalyst pretreatment and type of BN (exception of H2O reaction order of 0.3 and 1.04 for Au/BN2-600 and Au/BN2-600-H2, respectively). A mechanism with good species balance is proposed which may explain how water acts as a co-catalyst in RT CO oxidation over Au/BN. Au0 is the surface site for COad and O2ad while the interface of Au-BN involved the sites for molecular H2Oad. CO(H2O)n complex is formed from the interaction between COad and H2Oad and the rate-determining step is the reaction between CO(H2O)n and O2ad.

Abstract i Acknowledgements iii Table of Contents v List of Abbreviations viii List of Tables xiv List of Schemes xv Chapter 1. Literature Review 1 1. 1. Gold catalysts for CO oxidation 1 1. 1. 1. The important role of Au valence state in CO oxidation 1 1. 1. 2. Water enhance co oxidation at low temperature over au/metal oxide catalysts 4 1. 1. 3. Mechanism of CO oxidation over gold catalysts 7 1. 2. Carbon monoxide (CO) - the silent killer 12 1. 2. 1. Impact to human 12 1. 2. 2. Impact to climate modification 13 1. 3. Boron Nitride (BN) 13 1. 4. Motivation and goal 15 Chapter 2. Experimental Section 16 2. 1. Catalyst preparation 16 2. 1. 1. Methods for preparation of gold catalysts 16 2.1.1.1. Incipient wetness (wet impregnation – IMP) method80 16 2.1.1.2. Deposition – precipitation (DP) method 16 2. 1. 2. Deposition method for synthesis of 1wt% Au/BN 17 2. 2. Characterization 18 2. 2. 1. ICP-AES measurement 18 2. 2. 2. X-ray powder diffraction (XRD) 18 2. 2. 3. Scanning Electron Microscope (SEM) 18 2. 2. 4. High Resolution Transmission Electron Microscopy (HRTEM) Analysis 18 2. 2. 5. Adsorption-desorption isotherms 19 2. 2. 6. XPS analysis 19 2. 3. CO oxidation tests 19 2. 4. In-situ DRIFTS 21 2. 5. In situ UV-Vis-DRS 22 Chapter 3. Spectroscopic Studies of How Moisture Enhances CO Oxidation over Au/BN at Ambient Temperature 23 3. 1. Motivation 23 3. 2. Results 25 3. 2. 1. Effect of H2O on CO oxidation over Au/BN 25 3. 2. 2. In situ DRIFTS 27 3. 2. 3. In situ UV-Vis-DRS 31 3. 3. Discussion 34 3. 4. Summary 37 Chapter 4. Effect of Calcination Temperature on Water Adsorption Behavior and Au/BN Catalytic Activity in Moistened RT CO Oxidation 38 4. 1. Motivation 38 4. 2. Results 39 4. 2. 1. Effect of PH2O on moistened CO oxidation on Au/BN with various calcination 39 4. 2. 2. In situ DRIFTS of CO and CO-H2O feeding on Au/BN with various calcination 41 4. 2. 3. Effect of calcination temperature on water adsorption behaviors 42 4. 2. 4. Catalyst Characterization 44 4. 2. 5. XPS analysis 47 4. 3. Discussion 53 4. 4. Summary 56 Chapter 5. Kinetic and Mechanism Study of H2O co-catalyst with Au/BN in Room Temperature CO Oxidation 57 5. 1. Motivation 57 5. 2. Results 58 5. 2. 1. Effect of H2 treatment on dry and wet CO oxidations 58 5. 2. 2. Evidences from in situ DRIFTS 59 5. 2. 3. Proposed mechanism of H2O co-catalyst with Au/BN in RT CO oxidation 62 5. 2. 3. 1. Model 1: CO, O2, H2O adsorbed on the same site of Au 62 5. 2. 3. 2. Model 2: H2Oad on interfacial perimeter () and CO, O2 adsorbed on the same site of Au (*): 64 5. 3. Discussion 66 5. 4. Summary 69 Chapter 6. Concluding Remarks 71 Chapter 7. Recommendations for Future Research 73 References 74 Appendix A 85 Appendix B 90 Appendix C 96 Curriculum Vitae of Author 101 Publications 103 Conferences 103

(1) Daté, M.; Haruta, M. J Catal 2001, 201, pp 221-224.
(2) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chemistry Letters 1987, pp 405-408.
(3) Lin, S. D.; Bollinger, M.; Vannice, M. A. Catal Lett 1993, 17, pp 245-262.
(4) Boccuzzi, F.; Chiorino, A.; Tsubota, S.; Haruta, M. J Phys Chem 1996, 100, pp 3625-3631.
(5) Dekkers, M. A. P.; Lippits, M. J.; Nieuwenhuys, B. E. Catal Lett 1998, 56, pp 195-197.
(6) Finch, R. M.; Hodge, N. A.; Hutchings, G. J.; Meagher, A.; Pankhurst, Q. A.; Siddiqui, M. R. H.; Wagner, F. E.; Whyman, R. Physical Chemistry Chemical Physics 1999, 1, pp 485-489.
(7) Sanchez, A.; Abbet, S.; Heiz, U.; Schneider, W.-D.; Häkkinen, H.; Barnett, R.; Landman, U. The Journal of Physical Chemistry A 1999, 103, pp 9573-9578.
(8) Su, Y.-S.; Lee, M.-Y.; Lin, S. Catal Lett 1999, 57, pp 49-53.
(9) Bond, G. C.; Thompson, D. T. Gold Bull 2000, 33, pp 41-50.
(10) Boccuzzi, F.; Chiorino, A.; Manzoli, M.; Lu, P.; Akita, T.; Ichikawa, S.; Haruta, M. J Catal 2001, 202, pp 256-267.
(11) Grisel, R.; Nieuwenhuys, B. J Catal 2001, 199, pp 48-59.
(12) Costello, C.; Kung, M.; Oh, H.-S.; Wang, Y.; Kung, H. Appl Catal A Gen 2002, 232, pp 159-168.
(13) Date, M.; Ichihashi, Y.; Yamashita, T.; Chiorino, A.; Boccuzzi, F.; Haruta, M. Catal Today 2002, 72, pp 89-94.
(14) Lin, C.-H.; Hsu, S.-H.; Lee, M.-Y.; Lin, S. J Catal 2002, 209, pp 62-68.
(15) Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Journal of Catalysis 1993, 144, pp 175-192.
(16) Mullen, G. M.; Evans Jr, E. J.; Sabzevari, I.; Long, B. E.; Alhazmi, K.; Chandler, B. D.; Mullins, C. B. ACS Catalysis 2017, 7, pp 1216-1226.
(17) Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M. Science 2003, 301, pp 935-938.
(18) Gong, J.; Flaherty, D. W.; Yan, T.; Mullins, C. B. ChemPhysChem 2008, 9, pp 2461-2466.
(19) Naya, S.-i.; Teranishi, M.; Aoki, R.; Tada, H. The Journal of Physical Chemistry C 2016, 120, pp 12440-12445.
(20) Ni, J.; Yu, W.-J.; He, L.; Sun, H.; Cao, Y.; He, H.-Y.; Fan, K.-N. Green Chemistry 2009, 11, pp 756-759.
(21) Minato, T.; Susaki, T.; Shiraki, S.; Kato, H. S.; Kawai, M.; Aika, K.-i. Surface science 2004, 566, pp 1012-1017.
(22) Yoon, B.; Häkkinen, H.; Landman, U. The Journal of Physical Chemistry A 2003, 107, pp 4066-4071.
(23) Chen, M.; Cai, Y.; Yan, Z.; Goodman, D. W. Journal of the American Chemical Society 2006, 128, pp 6341-6346.
(24) Chakarova, K.; Mihaylov, M.; Ivanova, S.; Centeno, M. A.; Hadjiivanov, K. The Journal of Physical Chemistry C 2011, 115, pp 21273-21282.
(25) Wang, J. G.; Hammer, B. Topics in Catalysis 2007, 44, pp 49-56.
(26) Min, B. K.; Friend, C. M. Chemical Reviews 2007, 107, pp 2709-2724.
(27) Wagner, F. E.; Galvagno, S.; Milone, C.; Visco, A. M.; Stievano, L.; Calogero, S. Journal of the Chemical Society, Faraday Transactions 1997, 93, pp 3403-3409.
(28) Daniells, S. T.; Overweg, A. R.; Makkee, M.; Moulijn, J. A. Journal of Catalysis 2005, 230, pp 52-65.
(29) Venezia, A. M.; Pantaleo, G.; Longo, A.; Di Carlo, G.; Casaletto, M. P.; Liotta, F. L.; Deganello, G. The Journal of Physical Chemistry B 2005, 109, pp 2821-2827.
(30) Yang, J. H.; Henao, J. D.; Raphulu, M. C.; Wang, Y.; Caputo, T.; Groszek, A. J.; Kung, M. C.; Scurrell, M. S.; Miller, J. T.; Kung, H. H. The Journal of Physical Chemistry B 2005, 109, pp 10319-10326.
(31) Lin, S.; Bollinger, M.; Vannice, M. Catal Lett 1993, 17, pp 245-262.
(32) Haruta, M. Catalysis Surveys from Asia 1997, 1, pp 61-73.
(33) Molina, L.; Hammer, B. Applied Catalysis A: General 2005, 291, pp 21-31.
(34) Remediakis, I. N.; Lopez, N.; Nørskov, J. K. Angewandte Chemie 2005, 117, pp 1858-1860.
(35) Green, I. X.; Tang, W.; Neurock, M.; Yates, J. T. Science 2011, 333, pp 736-739.
(36) Green, I. X.; Tang, W.; McEntee, M.; Neurock, M.; Yates, J. T. Journal of the American Chemical Society 2012, 134, pp 12717-12723.
(37) Vilhelmsen, L. B.; Hammer, B. ACS Catalysis 2014, 4, pp 1626-1631.
(38) Liu, X.; Liu, M.-H.; Luo, Y.-C.; Mou, C.-Y.; Lin, S. D.; Cheng, H.; Chen, J.-M.; Lee, J.-F.; Lin, T.-S. J Am Chem Soc 2012, 134, pp 10251-10258.
(39) Costello, C.; Yang, J.; Law, H.; Wang, Y.; Lin, J.-N.; Marks, L.; Kung, M.; Kung, H. Appl Catal A Gen 2003, 243, pp 15-24.
(40) Qian, K.; Zhang, W.; Sun, H.; Fang, J.; He, B.; Ma, Y.; Jiang, Z.; Wei, S.; Yang, J.; Huang, W. Journal of Catalysis 2011, 277, pp 95-103.
(41) Ide, M. S.; Davis, R. J. Accounts of Chemical Research 2014, 47, pp 825-833.
(42) Ojeda, M.; Zhan, B.-Z.; Iglesia, E. J Catal 2012, 285, pp 92-102.
(43) Saavedra, J.; Doan, H. A.; Pursell, C. J.; Grabow, L. C.; Chandler, B. D. Science 2014, 345, pp 1599-1602.
(44) Okumura, M.; Tsubota, S.; Haruta, M. Angew Chem Int Ed Engl 2004, 43, pp 2129-2132.
(45) Kung, H. H.; Kung, M.; Costello, C. Journal of catalysis 2003, 216, pp 425-432.
(46) Henao, J. D.; Caputo, T.; Yang, J. H.; Kung, M. C.; Kung, H. H. The Journal of Physical Chemistry B 2006, 110, pp 8689-8700.
(47) Manzoli, M.; Chiorino, A.; Boccuzzi, F. Applied Catalysis B: Environmental 2004, 52, pp 259-266.
(48) Chen, J.; Pidko, E. A.; Ordomsky, V. V.; Verhoeven, T.; Hensen, E. J. M.; Schouten, J. C.; Nijhuis, T. A. Catal Sci Technol 2013, 3, pp 3042-3055.
(49) Romero-Sarria, F.; Penkova, A.; Martinez T, L. M.; Centeno, M. A.; Hadjiivanov, K.; Odriozola, J. A. Appl Catal B: Environ 2008, 84, pp 119-124.
(50) Zwijnenburg, A.; Goossens, A.; Sloof, W. G.; Crajé, M. W. J.; van der Kraan, A. M.; Jos de Jongh, L.; Makkee, M.; Moulijn, J. A. The Journal of Physical Chemistry B 2002, 106, pp 9853-9862.
(51) Costello, C.; Kung, M.; Oh, H.-S.; Wang, Y.; Kung, H. Applied Catalysis A: General 2002, 232, pp 159-168.
(52) Kung, H.; Kung, M.; Costello, C. Journal of catalysis 2003, 216, pp 425-432.
(53) Bongiorno, A.; Landman, U. Physical review letters 2005, 95, p 106102.
(54) Okumura, M.; Nakamura, S.; Tsubota, S.; Nakamura, T.; Azuma, M.; Haruta, M. Catal Lett 1998, 51, pp 53-58.
(55) Sun, Q.; Jena, P.; Kim, Y. D.; Fischer, M.; Ganteför, G. The Journal of chemical physics 2004, 120, pp 6510-6515.
(56) Levels, E. G. 2010.
(57) Topacoglu, H.; Katsakoglou, S.; Ipekci, A. Hippokratia 2014, 18, p 37.
(58) Fazlzadeh, M.; Rostami, R.; Hazrati, S.; Rastgu, A. Atmospheric Pollution Research 2015, 6, pp 550-555.
(59) La Fauci, G.; Weiser, G.; Steiner, I. P.; Shavit, I. Cjem 2012, 14, pp 57-59.
(60) Wolf, S. J.; Lavonas, E. J.; Sloan, E. P.; Jagoda, A. S. Journal of Emergency Nursing 2008, 34, pp e19-e32.
(61) Omaye, S. T. Toxicology 2002, 180, pp 139-150.
(62) Walsh, M. P. Platinum Metals Review 1989, 33, pp 194-212.
(63) Pakdel, A.; Zhi, C.; Bando, Y.; Nakayama, T.; Golberg, D. ACS Nano 2011, 5, pp 6507-6515.
(64) Lin, C.-A.; Wu, J. C.; Pan, J.-W.; Yeh, C.-T. Journal of Catalysis 2002, 210, pp 39-45.
(65) Wu, J. C.; Cheng, T.-S.; Lai, C.-L. Applied Catalysis A: General 2006, 314, pp 233-239.
(66) Schnee, J.; Eggermont, A.; Gaigneaux, E. M. ACS Catalysis 2017, 7, pp 4011-4017.
(67) Yabe, Y.; Yamada, T.; Nagata, S.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Advanced Synthesis & Catalysis 2012, 354, pp 1264-1268.
(68) Reich, S.; Ferrari, A. C.; Arenal, R.; Loiseau, A.; Bello, I.; Robertson, J. Physical Review B 2005, 71, p 205201.
(69) Xu, Y.-N.; Ching, W. Physical review B 1991, 44, p 7787.
(70) Solozhenko, V.; Will, G.; Elf, F. Solid state communications 1995, 96, pp 1-3.
(71) Maleki, M.; Beitollahi, A.; Lee, J.; Shokouhimehr, M.; Javadpour, J.; Park, E. J.; Chun, J.; Hwang, J. RSC Advances 2015, 5, pp 6528-6535.
(72) Rand, M. J.; Roberts, J. F. Journal of the Electrochemical Society 1968, 115, pp 423-429.
(73) Sichel, E.; Miller, R.; Abrahams, M.; Buiocchi, C. Physical review B 1976, 13, p 4607.
(74) Kostoglou, N.; Polychronopoulou, K.; Rebholz, C. Vacuum 2015, 112, pp 42-45.
(75) Meyer, N.; Pirson, D.; Devillers, M.; Hermans, S. Applied Catalysis A: General 2013, 467, pp 463-473.
(76) Kimura, Y.; Wakabayashi, T.; Okada, K.; Wada, T.; Nishikawa, H. Wear 1999, 232, pp 199-206.
(77) Eichler, J.; Lesniak, C. Journal of the European Ceramic Society 2008, 28, pp 1105-1109.
(78) Jang, W. S.; Kim, S. Y.; Lee, J.; Park, J.; Park, C. J.; Lee, C. J. Chemical physics letters 2006, 422, pp 41-45.
(79) Wu, J. C.-S.; Lin, Z.-A.; Pan, J.-W.; Rei, M.-H. Applied Catalysis A: General 2001, 219, pp 117-124.
(80) Lin, S.; Vannice, M. Catal Lett 1991, 10, pp 47-61.
(81) Tsai, H.-Y.; Lin, Y.-D.; Fu, W.-T.; Lin, S. D. Gold Bull 2007, 40, pp 184-191.
(82) Liu, L.; Zhou, F.; Wang, L.; Qi, X.; Shi, F.; Deng, Y. Journal of Catalysis 2010, 274, pp 1-10.
(83) Li, W.-C.; Comotti, M.; Schüth, F. Journal of Catalysis 2006, 237, pp 190-196.
(84) Su, Y.-S.; Lee, M.-Y.; Lin, S. D. Catal Lett 1999, 57, pp 49-53.
(85) Haruta, M. Cattech 2002, 6, pp 102-115.
(86) Šmit, G.; Strukan, N.; Crajé, M. W. J.; Lázár, K. J Mol Catal A: Chem 2006, 252, pp 163-170.
(87) Wang, H. F.; Kavanagh, R.; Guo, Y. L.; Guo, Y.; Lu, G. Z.; Hu, P. Angewandte Chemie International Edition 2012, 51, pp 6657-6661.
(88) Zhang, S.; Li, X.-S.; Chen, B.; Zhu, X.; Shi, C.; Zhu, A.-M. ACS Catalysis 2014, 4, pp 3481-3489.
(89) Bongiorno, A.; Landman, U. Phys Rev Lett 2005, 95, p 106102.
(90) Chang, C.-R.; Wang, Y.-G.; Li, J. Nano Res 2011, 4, pp 131-142.
(91) Chang, C.-R.; Huang, Z.-Q.; Li, J. Nano Res 2015, 8, pp 3737-3748.
(92) McCandlish, E.; Miksztal, A. R.; Nappa, M.; Sprenger, A. Q.; Valentine, J. S.; Stong, J. D.; Spiro, T. G. J Am Chem Soc 1980, 102, pp 4268-4271.
(93) Kitajima, N.; Komatsuzaki, H.; Hikichi, S.; Osawa, M.; Moro-oka, Y. J Am Chem Soc 1994, 116, pp 11596-11597.
(94) Lin, W.; Frei, H. J Am Chem Soc 2002, 124, pp 9292-9298.
(95) Nakamura, R.; Imanishi, A.; Murakoshi, K.; Nakato, Y. J Am Chem Soc 2003, 125, pp 7443-7450.
(96) Huang, J.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Angew Chem Int Ed Engl 2009, 48, pp 7862-7866.
(97) Watanabe, K.; Taniguchi, T.; Kanda, H. Nat Mater 2004, 3, pp 404-409.
(98) Stehle, Y.; Meyer, H. M.; Unocic, R. R.; Kidder, M.; Polizos, G.; Datskos, P. G.; Jackson, R.; Smirnov, S. N.; Vlassiouk, I. V. Chem Mater 2015, 27, pp 8041-8047.
(99) Fielicke, A.; von Helden, G.; Meijer, G.; Pedersen, D. B.; Simard, B.; Rayner, D. M. J Am Chem Soc 2005, 127, pp 8416-8423.
(100) Leppelt, R.; Schumacher, B.; Plzak, V.; Kinne, M.; Behm, R. J. J Catal 2006, 244, pp 137-152.
(101) Venkov, T.; Fajerwerg, K.; Delannoy, L.; Klimev, H.; Hadjiivanov, K.; Louis, C. Appl Catal A Gen 2006, 301, pp 106-114.
(102) Manzoli, M.; Boccuzzi, F.; Chiorino, A.; Vindigni, F.; Deng, W.; Flytzani-Stephanopoulos, M. J Catal 2007, 245, pp 308-315.
(103) Hugon, A.; Kolli, N. E.; Louis, C. J Catal 2010, 274, pp 239-250.
(104) Hadjiivanov, K. I.; Klissurski, D. G. Chem Soc Rev 1996, 25, pp 61-69.
(105) Hadjiivanov, K. Appl Surf Sci 1998, 135, pp 331-338.
(106) Guzman, J.; Carrettin, S.; Corma, A. J Am Chem Soc 2005, 127, pp 3286-3287.
(107) Gaur, S.; Wu, H.; Stanley, G. G.; More, K.; Kumar, C. S. S. R.; Spivey, J. J. Catal Today 2013, 208, pp 72-81.
(108) Venkov, T.; Klimev, H.; Centeno, M. A.; Odriozola, J. A.; Hadjiivanov, K. Catal Commun 2006, 7, pp 308-313.
(109) Quiller, R.; Baker, T.; Deng, X.; Colling, M.; Min, B.; Friend, C. The Journal of chemical physics 2008, 129, p 064702.
(110) Wu, Z.; Jiang, Z.; Jin, Y.; Xiong, F.; Huang, W. The Journal of Physical Chemistry C 2014, 118, pp 26258-26263.
(111) van Spronsen, M. A.; Weststrate, K.-J.; den Dunnen, A.; van Reijzen, M. E.; Hahn, C.; Juurlink, L. B. The Journal of Physical Chemistry C 2016, 120, pp 8693-8703.
(112) Ferguson, J.; Weimer, A.; George, S. Chem Mater 2000, 12, pp 3472-3480.
(113) Sato, K.; Horibe, H.; Shirai, T.; Hotta, Y.; Nakano, H.; Nagai, H.; Mitsuishi, K.; Watari, K. Journal of Materials Chemistry 2010, 20, pp 2749-2752.
(114) Engeldinger, J.; Richter, M.; Bentrup, U. Phys Chem Chem Phys 2012, 14, pp 2183-2191.
(115) Leba, A.; Davran-Candan, T.; Önsan, Z. I.; Yıldırım, R. Catal Commun 2012, 29, pp 6-10.
(116) Shi En, F. National Taiwan University of Science and Technology (in progress) 2017.
(117) Wang, Y.; Jiang, J.; Cheng, C.; Lin, S.; Lee, Y.; Chang, H. Journal of Chemical Physics 1997, 107, pp 9695-9698.
(118) Jiang, J.-C.; Chang, J.-C.; Wang, B.-C.; Lin, S.; Lee, Y.; Chang, H.-C. Chemical physics letters 1998, 289, pp 373-382.
(119) Citra, A.; Chertihin, G. V.; Andrews, L.; Neurock, M. J Phys Chem A 1997, 101, pp 3109-3118.
(120) Itoh, S. Curr Opin Chem Biol 2006, 10, pp 115-122.
(121) Valentine, J. S. Chem Rev 1973, 73, pp 235-245.
(122) Shearer, J.; Scarrow, R. C.; Kovacs, J. A. J Am Chem Soc 2002, 124, pp 11709-11717.
(123) Goebel, J. R.; Ault, B. S.; Del Bene, J. E. J Phys Chem A 2001, 105, pp 11365-11370.
(124) Rogers, J. D.; Hillman, J. J. J Chem Phys 1981, 75, pp 1085-1090.
(125) Li, M.; Wu, Z.; Overbury, S. H. Journal of Catalysis 2011, 278, pp 133-142.
(126) Egan, J. W.; Haggerty, B. S.; Rheingold, A. L.; Sendlinger, S. C.; Theopold, K. H. J Am Chem Soc 1990, 112, pp 2445-2446.
(127) Gallard, H.; De Laat, J.; Legube, B. Water Res 1999, 33, pp 2929-2936.
(128) Chowdhury, B.; Bravo-Suárez, J. J.; Mimura, N.; Lu; Bando, K. K.; Tsubota, S.; Haruta, M. J Phys Chem B 2006, 110, pp 22995-22999.
(129) Grant, J.; Carrero, C.; Goeltl, F.; Venegas, J.; Mueller, P.; Burt, S.; Specht, S.; McDermott, W.; Chieregato, A.; Hermans, I. Science 2016, 354, pp 1570-1573.
(130) Su, C.; Suarez, D. L. 1995.
(131) Sainsbury, T.; O’Neill, A.; Passarelli, M. K.; Seraffon, M.; Gohil, D.; Gnaniah, S.; Spencer, S. J.; Rae, A.; Coleman, J. N. Chem Mater 2014, 26, pp 7039-7050.
(132) Liao, Y.; Tu, K.; Han, X.; Hu, L.; Connell, J. W.; Chen, Z.; Lin, Y. Scientific reports 2015, 5, p 14510.
(133) Peak, D.; Luther, G. W.; Sparks, D. L. Geochimica et Cosmochimica Acta 2003, 67, pp 2551-2560.
(134) Tang, C.; Bando, Y.; Huang, Y.; Zhi, C.; Golberg, D. Advanced Functional Materials 2008, 18, pp 3653-3661.
(135) Edens, G. J.; Hamelin, A.; Weaver, M. J. The Journal of Physical Chemistry 1996, 100, pp 2322-2329.
(136) Koverga, A. A.; Frank, S.; Koper, M. T. Electrochimica Acta 2013, 101, pp 244-253.
(137) Carrasco, J.; Hodgson, A.; Michaelides, A. Nature materials 2012, 11, pp 667-674.
(138) Merte, L. R.; Bechstein, R.; Peng, G.; Rieboldt, F.; Farberow, C. A.; Zeuthen, H.; Knudsen, J.; Lægsgaard, E.; Wendt, S.; Mavrikakis, M. Nature communications 2014, 5.
(139) Wang, Y.; Balbuena, P. B. The Journal of Physical Chemistry B 2005, 109, pp 18902-18906.
(140) Anderson, A. B.; Albu, T. V. Journal of The Electrochemical Society 2000, 147, pp 4229-4238.
(141) Daté, M.; Haruta, M. Journal of Catalysis 2001, 201, pp 221-224.
(142) Ojeda, M.; Zhan, B.-Z.; Iglesia, E. Journal of catalysis 2012, 285, pp 92-102.
(143) Costello, C.; Yang, J.; Law, H.; Wang, Y.; Lin, J.-N.; Marks, L.; Kung, M.; Kung, H. H. Applied Catalysis A: General 2003, 243, pp 15-24.
(144) Konova, P.; Naydenov, A.; Venkov, C.; Mehandjiev, D.; Andreeva, D.; Tabakova, T. Journal of Molecular Catalysis A: Chemical 2004, 213, pp 235-240.
(145) Comotti, M.; Li, W.-C.; Spliethoff, B.; Schüth, F. Journal of the American Chemical Society 2006, 128, pp 917-924.
(146) Romero-Sarria, F.; Penkova, A.; Centeno, M.; Hadjiivanov, K.; Odriozola, J. Applied Catalysis B: Environmental 2008, 84, pp 119-124.
(147) Boccuzzi, F.; Chiorino, A.; Tsubota, S.; Haruta, M. The Journal of Physical Chemistry 1996, 100, pp 3625-3631.
(148) Wang, J.; Hammer, B. Topics in Catalysis 2007, 44, pp 49-56.
(149) Costello, C.; Kung, M.; Oh, H.-S.; Wang, Y.; Kung, H. H. Applied Catalysis A: General 2002, 232, pp 159-168.
(150) Šmit, G.; Strukan, N.; Crajé, M. W. J.; Lázár, K. Journal of Molecular Catalysis A: Chemical 2006, 252, pp 163-170.
(151) Tran-Thuy, T.-M.; Chen, C.-C.; Lin, S. D. ACS Catalysis 2017, pp 4304-4312.
(152) Kahlich, M. J.; Gasteiger, H. A.; Behm, R. J. Journal of Catalysis 1999, 182, pp 430-440.
(153) Haruta, M. Journal of New Materials for Electrochemical Systems 2004, 7, pp 163-172.
(154) Haruta, M. Gold bulletin 2004, 37, pp 27-36.
(155) Šmit, G.; Strukan, N.; Crajé, M. W.; Lázár, K. Journal of Molecular Catalysis A: Chemical 2006, 252, pp 163-170.
(156) Schumacher, B.; Denkwitz, Y.; Plzak, V.; Kinne, M.; Behm, R. J. Journal of Catalysis 2004, 224, pp 449-462.
(157) Venkov, T.; Fajerwerg, K.; Delannoy, L.; Klimev, H.; Hadjiivanov, K.; Louis, C. Applied Catalysis A: General 2006, 301, pp 106-114.
(158) Delannoy, L.; Weiher, N.; Tsapatsaris, N.; Beesley, A. M.; Nchari, L.; Schroeder, S. L. M.; Louis, C. Topics in Catalysis 2007, 44, pp 263-273.
(159) Morimoto, T.; Nagao, M.; Tokuda, F. The Journal of Physical Chemistry 1969, 73, pp 243-248.
(160) Saavedra, J.; Whittaker, T.; Chen, Z.; Pursell, C. J.; Rioux, R. M.; Chandler, B. D. Nature chemistry 2016.
(161) Grunwaldt, J.-D.; Maciejewski, M.; Becker, O. S.; Fabrizioli, P.; Baiker, A. Journal of Catalysis 1999, 186, pp 458-469.
(162) Boo, J.-H.; Rohr, C.; Ho, W. Journal of Crystal Growth 1998, 189–190, pp 439-444.
(163) Sainsbury, T.; Satti, A.; May, P.; Wang, Z.; McGovern, I.; Gun’ko, Y. K.; Coleman, J. Journal of the American Chemical Society 2012, 134, pp 18758-18771.
(164) Clabes, J.; Fern, R.; Frischat, G. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 1986, 4, pp 1580-1584.
(165) Guimon, C.; Gonbeau, D.; Pfister‐Guillouzo, G.; Dugne, O.; Guette, A.; Naslain, R.; Lahaye, M. Surface and Interface Analysis 1990, 16, pp 440-445.
(166) Acquaviva, S.; Leggieri, G.; Luches, A.; Perrone, A.; Zocco, A.; Laidani, N.; Speranza, G.; Anderle, M. Applied Physics A: Materials Science & Processing 2000, 70, pp 197-201.
(167) Burmeister, R.; Despeyroux, B.; Deller, K.; Seibold, K.; Albers, P. Studies in Surface Science and Catalysis 1993, 78, pp 361-368.
(168) Jacobsohn, L.; Schulze, R.; da Costa, M. M.; Nastasi, M. Surface Science 2004, 572, pp 418-424.
(169) Liu, Z.; Song, L.; Zhao, S.; Huang, J.; Ma, L.; Zhang, J.; Lou, J.; Ajayan, P. M. Nano letters 2011, 11, pp 2032-2037.
(170) Ivanova, A.; Slavinskaya, E.; Stonkus, O.; Gulyaev, R.; Glazneva, T.; Noskov, A.; Boronin, A. Catalysis Science & Technology 2016.
(171) Wu, Z.; Zhou, S.; Zhu, H.; Dai, S.; Overbury, S. H. The Journal of Physical Chemistry C 2009, 113, pp 3726-3734.
(172) Maciejewski, M.; Fabrizioli, P.; Grunwaldt, J.-D.; Becker, O. S.; Baiker, A. Physical Chemistry Chemical Physics 2001, 3, pp 3846-3855.
(173) Arrii, S.; Morfin, F.; Renouprez, A.; Rousset, J. Journal of the American Chemical Society 2004, 126, pp 1199-1205.
(174) Hutchings, G. J.; Hall, M. S.; Carley, A. F.; Landon, P.; Solsona, B. E.; Kiely, C. J.; Herzing, A.; Makkee, M.; Moulijn, J. A.; Overweg, A. Journal of Catalysis 2006, 242, pp 71-81.
(175) Guzman, J.; Carrettin, S.; Corma, A. Journal of the American Chemical Society 2005, 127, pp 3286-3287.
(176) Moreau, F.; Bond, G. C.; van der Linden, B.; Silberova, B. A. A.; Makkee, M. Applied Catalysis A: General 2008, 347, pp 208-215.
(177) Cosandey, F.; Madey, T. Surface Review and Letters 2001, 8, pp 73-93.
(178) Chen, L. C.; Cheng, H.; Chiang, C. W.; Lin, S. D. ChemSusChem 2015, 8, pp 1787-1793.
(179) Qiao, B.; Liu, J.; Wang, Y.-G.; Lin, Q.; Liu, X.; Wang, A.; Li, J.; Zhang, T.; Liu, J. ACS Catalysis 2015, 5, pp 6249-6254.
(180) Liu, K.; Wang, A.; Zhang, T. ACS Catalysis 2012, 2, pp 1165-1178.

QR CODE