簡易檢索 / 詳目顯示

研究生: Kurniawan Adi Kuncoro
Kurniawan - Adi Kuncoro
論文名稱: 從廢棄 ITO 回收銦之研究
Recovery of Indium from Waste ITO
指導教授: 劉志成
Jhy-Chern Liu
口試委員: 顧 洋
Ku, Young
Chi-Wang Li
Chi-Wang Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 82
中文關鍵詞: 置換溶解萃取銦錫氧化物次臨界水
外文關鍵詞: cementation, dissolution, extraction, indium, indium tin oxide (ITO), subcritical water
相關次數: 點閱:265下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現今,銦和他的化合物有多種工業用途,並且廣泛的被使用在製造薄膜晶體管液晶顯示器(TFT-LCD)、半導體、低溫焊料和紅外探測器。但是銦是廣泛的分布於各處,並沒有單獨的儲藏區,它是鋁和鋅初級產品的副產物。生產銦錫氧化物 (ITO) 被使用於各式各樣的平板器材中,像是 TFT-LCDs,並且這會持續地成為全球銦使用的最終用途與消耗。因此,增加與多廣泛的研究有關從二次資源中回收銦。然而,傳統技術涉及顯著用量的強酸及溶劑,會環境不友善,現在一個新的技術是使用次臨界流體的水從廢棄ITO中萃取銦。此實驗使用四種有機酸,像是醋酸、葡糖酸、檸檬酸、依替膦酸,其固液比10 g/L。醋酸和葡糖酸都無法有效溶解ITO。當使用1M的檸檬酸,在100°C反應30分鐘可以溶解 35.99% 的ITO,在125°C和150°C反應30分鐘,壓力從12 kg/cm2到19kg/cm2,分別可以溶解57.28%和70.71%的ITO。 關於酸強度的影響,我們發現0.1M依替膦酸可溶解50.77% ITO,而0.5M和2.0M的依替膦酸分別可溶解96.31%和97.54%的ITO。與傳統萃取方法比較,次臨界水的萃取不只是顯著的有效率,也可以不使用強酸或其他溶劑。此外對滲濾液進行初步測試置換反應,發現滲濾液中有依替膦酸和檸檬酸配體,可以抑制銦或錫被鋁置換的機制,這些銦或錫與依替膦酸或檸檬酸配體形成的複合物跟單純的銦或錫離子相比,氧化還原電位可能會升高。


Nowadays, indium (In) and its compounds have numerous industrial applications, and it is extensively used in the manufacture of thin film transistor liquid crystal display (TFTLCD), semiconductors, low-temperature solders and infrared photodetectors. However, In is widely distributed and has no individual reserve. It is a by-product commodity from primary ones of aluminum and zinc. Production of indium tin oxide (ITO), which is used in a variety of flat panel devices such as TFT-LCDs, continues to be the major end use of In and it accounts for most global In consumption. Therefore, the recovery of In from secondary resources has received extensive study. Yet, traditional technologies involve significant amount of strong acid and solvent and may not be environmentally friendly. A novel technology using subcritical water extraction was applied to extract In from waste ITO. Four types of organic acid including acetic acid, gluconic acid, citric acid, and etidronic acid were used for this purpose at solid to liquid ratio (S/L) of 10 g/L. Neither acetic acid nor gluconic acid yielded effective dissolution of ITO. When 1 M of citric acid was used, 35.99% ITO dissolved at 100°C within 30 min, while 57.28% and 70.71% dissolved at 125°C and 150°C, respectively, as pressure varied from 12 to 19 kg/cm2. Regarding effect of acid strength, it was found that 50.77% ITO dissolved at 0.1 M of etidronic acid, and it increased to 96.31% and 97.54% at 0.5 and 2.0 M, respectively. Compared with conventional extraction methods, subcritical water extraction was not only more effective and rapid but also free from the use of strong acid or solvent. Furthermore, the preliminary test of cementation reaction of the leachate showed that indium or tin cementation by aluminum was inhibited in the presence of etidronate and citrate ligands in the leachate. The complex formation between indium or tin and etidronate or citrate ligands might increase the redox potential of the species than that of free indium or tin ions.

CHAPTER 1 INTRODUCTION 2.1. Background 2.2. Objectives CHAPTER 2 LITERATURE REVIEW 2.1. Indium and indium tin oxide (ITO) 2.2. Recovery of indium from secondary sources 2.3. The theory of subcritical water extraction and its applications 2.4. The theory of cementation CHAPTER 3 MATERIALS AND METHODS 3.1. Materials and reagents 3.2. Equipment and instruments 3.3. Experimental method 3.3.1. Subcritical water treatment procedure 3.3.2. Cementation procedure 3.3.3. ICP-AES analysis 3.3.4. FESEM-EDS analysis 3.3.5. Chemical equilibrium diagram software (HYDRA/MEDUSA) CHAPTER 4 RESULTS AND DISCUSSION 4.1. Waste ITO characterization 4.2. Subcritical water extraction 4.1.1. Effect of acid type 4.1.2. Effect of acid concentration 4.1.3. Effect of temperature 4.3. Preliminary results of cementation CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 5.1. Conclusions 5.2. Suggestions REFERENCES

Alfantazi, A.M., Moskalyk, R.R., 2003. Processing of indium: a review. Miner Eng 16, 687-694.
Antelman, M., 2012. The Encyclopedia of Chemical Electrode Potentials. Springer US.
Ardente, F., Mathieux, F., Recchioni, M., 2014. Recycling of electronic displays: Analysis of pre-processing and potential ecodesign improvements. Resour Conserv Recy 92, 158-171.
Bénézeth, P., Palmer, D.A., Wesolowski, D.J., 1997. Dissociation quotients for citric acid in aqueous sodium chloride media to 150°C. Journal of Solution Chemistry 26, 63-84.
Bubalo, M.C., Vidovic, S., Redovnikovic, I.R., Jokic, S., 2015. Green solvents for green technologies. J Chem Technol Biot 90, 1631-1639.
Carr, A.G., Mammucari, R., Foster, N.R., 2011. A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chem Eng J 172, 1-17.
Chou, W.L., Huang, Y.H., 2009. Electrochemical removal of indium ions from aqueous solution using iron electrodes. J Hazard Mater 172, 46-53.
Chou, W.L., Yang, K.C., 2008. Effect of various chelating agents on supercritical carbon dioxide extraction of indium(III) ions from acidic aqueous solution. J Hazard Mater 154, 498-505.
He, Y.X., Ma, E., Xu, Z.M., 2014. Recycling indium from waste liquid crystal display panel by vacuum carbon-reduction. J Hazard Mater 268, 185-190.
Hsieh, S.J., Chen, C.C., Say, W.C., 2009. Process for recovery of indium from ITO scraps and metallurgic microstructures. Mater Sci Eng B-Adv 158, 82-87.
Inoue, K., Alam, S., 2015. Hydrometallurgical Recovery of Indium from Flat-Panel Displays of Spent Liquid Crystal Televisions. Jom-Us 67, 400-405.
Inoue, K., Nishiura, M., Kawakita, H., Ohto, K., Harada, H., 2008. Recovery of Indium from Spent Panel of Liquid Crystal Display Panels. Kagaku Kogaku Ronbun 34, 282-286.
Islam, M.N., Jung, H.Y., Park, J.H., 2015a. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals. Journal of Environmental Management 163, 262-269.
Islam, M.N., Park, J.H., Shin, M.S., Park, H.S., 2014. Decontamination of PCBs-containing soil using subcritical water extraction process. Chemosphere 109, 28-33.
Islam, M.N., Shin, M.S., Jo, Y.T., Park, J.H., 2015b. TNT and RDX degradation and extraction from contaminated soil using subcritical water. Chemosphere 119, 1148-1152.
Kang, H.N., Kim, K.Y., Kim, J.Y., 2013. Recovery and purification of indium from waste sputtering target by selective solvent extraction of Sn. Green Chem 15, 2200-2207.
Kang, H.N., Lee, J.Y., Kim, J.Y., 2011. Recovery of indium from etching waste by solvent extraction and electrolytic refining. Hydrometallurgy 110, 120-127.
Karavasteva, M., 2014. The effect of magnesium and zinc on indium cementation kinetics and deposit morphology in the presence of and without nonylphenylpolyethylene glycol. Hydrometallurgy 150, 47-51.
Kato, T., Igarashi, S., Ishiwatari, Y., Furukawa, M., Yamaguchi, H., 2013. Separation and concentration of indium from a liquid crystal display via homogeneous liquid-liquid extraction. Hydrometallurgy 137, 148-155.
Katritzky, A.R., Allin, S.M., Siskin, M., 1996. Aquathermolysis: Reactions of organic compounds with superheated water. Accounts Chem Res 29, 399-406.
Kirmizakis, P., Tsamoutsoglou, C., Kayan, B., Kalderis, D., 2014. Subcritical water treatment of landfill leachate: Application of response surface methodology. Journal of Environmental Management 146, 9-15.
Kronholm, J., Hartonen, K., Riekkola, M.L., 2007. Analytical extractions with water at elevated temperatures and pressures. Trac-Trend Anal Chem 26, 396-412.
Kruse, A., Dinjus, E., 2007. Hot compressed water as reaction medium and reactant - Properties and synthesis reactions. J Supercrit Fluid 39, 362-380.
Ku, Y., Chen, C.H., 1992. Removal of chelated copper from wastewaters by iron cementation. Ind Eng Chem Res 31, 1111-1115.
Ku, Y., Wu, M.-H., Shen, Y.-S., 2002. A study on the cadmium removal from aqueous solutions by zinc cementation. Separ Sci Technol 37, 571-590.
Kulkarni, A.K., Daneshvarhosseini, S., Yoshida, H., 2011. Effective recovery of pure aluminum from waste composite laminates by sub- and super-critical water. J Supercrit Fluid 55, 992-997.
Lai, C.-C., Ku, Y., 1992. Effect of chelate formation on the kinetics of cadmium electrodeposition in citrate solution. Electrochimica Acta 37, 631-633.
Li, J., Gao, S., Duan, H., Liu, L., 2009. Recovery of valuable materials from waste liquid crystal display panel. Waste Manage 29, 2033-2039.
Li, R.D., Yuan, T.C., Fan, W.B., Qiu, Z.L., Su, W.J., Zhong, N.Q., 2014. Recovery of indium by acid leaching waste ITO target based on neural network. T Nonferr Metal Soc 24, 257-262.
Li, Y.H., Liu, Z.H., Li, Q.H., Liu, Z.Y., Zeng, L., 2011. Recovery of indium from used indium-tin oxide (ITO) targets. Hydrometallurgy 105, 207-212.
Martell, A.E., Smith, R.M., 1977. Other Organic Ligands. Plenum Press.
Mesmer, R.E., Patterson, C.S., Busey, R.H., Holmes, H.F., 1989. Ionization of acetic acid in aq. sodium chloride media: a potentiometric study to 573K and 130 bar. The Journal of Physical Chemistry 93, 7483-7490.
Moller, M., Nilges, P., Harnisch, F., Schroder, U., 2011. Subcritical Water as Reaction Environment: Fundamentals of Hydrothermal Biomass Transformation. Chemsuschem 4, 566-579.
Murphy, D.M., Koop, T., 2005. Review of the vapour pressures of ice and supercooled water for atmospheric applications. Q J Roy Meteor Soc 131, 1539-1565.
Nakashima, K., Kumahara, Y., 2002. Effect of tin oxide dispersion on nodule formation in ITO sputtering. Vacuum 66, 221-226.
Oh, S.Y., Yoon, M.K., Kim, I.H., Kim, J.Y., Bae, W., 2011. Chemical extraction of arsenic from contaminated soil under subcritical conditions. Sci Total Environ 409, 3066-3072.
Osada, M., Sato, T., Watanabe, M., Shirai, M., Arai, K., 2006. Catalytic gasification of wood biomass in subcritical and supercritical water. Combust Sci Technol 178, 537-552.
Paiva, A.P., 2001. Recovery of indium from aqueous solutions by solvent extraction. Separ Sci Technol 36, 1395-1419.
Park, K.S., Sato, W., Grause, G., Kameda, T., Yoshioka, T., 2009. Recovery of indium from In2O3 and liquid crystal display powder via a chloride volatilization process using polyvinyl chloride. Thermochim Acta 493, 105-108.
Phipps, G., Mikolajczak, C., Guckes, T., 2008. Indium and Gallium: long-term supply. Renewable Energy Focus 9, 56-59.
Priego-Lopez, E., de Castro, M.D.L., 2002. Demetalisation of soils by continuous acidified subcritical water extraction. Talanta 58, 377-385.
Rocchetti, L., Amato, A., Beolchini, F., 2016. Recovery of indium from liquid crystal displays. J Clean Prod 116, 299-305.
Rocchetti, L., Amato, A., Fonti, V., Ubaldini, S., De Michelis, I., Kopacek, B., Veglio, F., Beolchini, F., 2015. Cross-current leaching of indium from end-of-life LCD panels. Waste Manage 42, 180-187.
Shi, W.S., Liu, C.G., Ding, D.H., Lei, Z.F., Yang, Y.N., Feng, C.P., Zhang, Z.Y., 2013. Immobilization of heavy metals in sewage sludge by using subcritical water technology. Bioresource Technol 137, 18-24.
Silveira, A.V.M., Fuchs, M.S., Pinheiro, D.K., Tanabe, E.H., Bertuol, D.A., 2015. Recovery of indium from LCD screens of discarded cell phones. Waste Manage 45, 334-342.
Siskin, M., Katritzky, A.R., 2001. Reactivity of organic compounds in superheated water: General background. Chem Rev 101, 825-835.
Smith, R.M., Martell, A.E., 1976. Critical stability constants. Volume 4. Inorganic complexes. Plenum.
Suyama, K., Kubota, M., Shirai, M., Yoshida, H., 2007. Degradation of crosslinked unsaturated polyesters in sub-critical water. Polym Degrad Stabil 92, 317-322.
Sweeton, F.H., Mesmer, R.E., Baes, C.F., 1974. Acidity measurements at elevated temperatures. VII. Dissociation of water. Journal of Solution Chemistry 3, 191-214.
Tavakoli, O., Yoshida, H., 2008. Application of sub-critical water technology for recovery of heavy metal ions from the wastes of Japanese scallop Patinopecten yessoensis. Sci Total Environ 398, 175-184.
Tremaine, P., Zhang, K., Bénézeth, P., Xiao, C., 2004. Chapter 13 - Ionization equilibria of acids and bases under hydrothermal conditions A2 - Palmer, Donald A. in: Fernández-Prini, R., Harvey, A.H. (Eds.). Aqueous Systems at Elevated Temperatures and Pressures. Academic Press, London, pp. 441-492.
Tsujiguchi, M., 2012. Indium Recovery and Recycling from an LCD Panel. in: Matsumoto, M., Umeda, Y., Masui, K., Fukushige, S. (Eds.). Design for Innovative Value Towards a Sustainable Society: Proceedings of EcoDesign 2011: 7th International Symposium on Environmentally Conscious Design and Inverse Manufacturing. Springer Netherlands, Dordrecht, pp. 743-746.
Virolainen, S., Ibana, D., Paatero, E., 2011. Recovery of indium from indium tin oxide by solvent extraction. Hydrometallurgy 107, 56-61.
Wang, H.Y., 2011. The effect of the proportion of thin film transistor-liquid crystal display (TFT-LCD) optical waste glass as a partial substitute for cement in cement mortar. Constr Build Mater 25, 791-797.
Xiu, F.R., Qi, Y.Y., Zhang, F.S., 2014. Co-treatment of waste printed circuit boards and polyvinyl chloride by subcritical water oxidation: Removal of brominated flame retardants and recovery of Cu and Pb. Chem Eng J 237, 242-249.
Yabalak, E., Gizir, A.M., 2013. Subcritical and supercritical fluid extraction of heavy metals from sand and sewage sludge. J Serb Chem Soc 78, 1013-1022.
Yamada, M., 1997. Desorption of InOH from indium oxides under exposure to atomic hydrogen. Chem Phys Lett 280, 535-538.
Yang, J.X., Retegan, T., Ekberg, C., 2013. Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy 137, 68-77.
Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., Asghari, F.S., 2015. Recovery of indium from TFT and CF glasses of LCD wastes using NaOH-enhanced sub-critical water. J Supercrit Fluid 104, 40-48.
Yoshida, H., Izhar, S., Nishio, E., Utsumi, Y., Kakimori, N., Feridoun, S.A., 2014. Recovery of indium from TFT and CF glasses in LCD panel wastes using sub-critical water. Sol Energ Mat Sol C 125, 14-19.
Yoshida, H., Terashima, M., Takahashi, Y., 1999. Production of organic acids and amino acids from fish meat by sub-critical water hydrolysis. Biotechnol Progr 15, 1090-1094.

QR CODE