簡易檢索 / 詳目顯示

研究生: 邱國煌
Kuo-huang Chiu
論文名稱: 二氧化矽沉澱包埋 固定化D-hydantoinase之研究
3-aminopropyl triethoxysilane (APTS) induced silica precipitation for D-hydantoinase encapsulation
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 朱義旭
Yi-Hsu Ju
劉懷勝
Hwai-Shen Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 75
中文關鍵詞: 固定化酵素二氧化矽溶膠凝膠
外文關鍵詞: immobilized, enzyme, silica, sol-gel
相關次數: 點閱:439下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

中文摘要
本論文研究開發出另一種促進silica沉澱的方式,在酸水解後的tetramethylorthosilicate (TMOS)中加入酸水解後的3-aminopropyl triethoxysilane(APTS)及酵素溶液會促成silica沉澱,在silica沉澱的過程中酵素會被包埋在silica顆粒中而形成固定化酵素。經電子顯微鏡(SEM)觀察silica顆粒粒徑約為400~500nm,在包埋固定化牛血清蛋白時,最適固定化的條件為pH7~9的Tris-HCl緩衝液,牛血清蛋白濃度為2.5mg/mL,可全部被包埋。
D-p-hydroxyphenylglycine( D-p-HPG )為抗生素Amoxicillin的前驅物之一,而D-hydantoinase為製備D-p-HPG的必要酵素。因此本論文以基因重組技術建構從Agrobacterium radiobacter來的D-hydantoinase表現質體,在E. coli BL21(DE)中大量表現,在直接固定化D-hydantoinase粗萃液時,每克silica乾重約可包埋189.3mg的蛋白質,包埋率約為82.3%,活性回收率約為91.86%,silica顆粒粒徑約為50~80nm。因silica顆粒在pH>8的環境中會被水解,在經戊二醛表面處理後可達到保護silica效果,防止酵素漏失,其活性回收率約為71.32%,最適戊二醛濃度為2%,酵素最適反應溫度為55℃~60℃,在55℃下,固定化後可使半生期增加3倍,固定化後之酵素重複使用七次後,殘餘活性仍可達92%。


ABSTRACT
D-hydantoinase, encoded from recombinant Escherichia coli BL21 (DE3) harbouring plasmid pET30b derived from Agrobacterium radiobacter, was used as an immobilization enzyme to catalyst the production of N-carbamoyl-D-phenylglycine from DL-p-phenylhydantoin, an intermediate substance for the production of D-phenylglycine. The encapsulation of enzyme is an attractive approach to prevent the enzyme from leakage. Enzyme-encapsulated in silica is the commenly used and the matrix is usually formed by sol-gel processing, by using polypeptides (polyamines), or biomimicking catalysts, i.e. cysteamine, to initiate silica polycondensation. In this study, silica matrix are formed from silicic acid by acid hydrolyzed of 3-aminopropyl triethoxysilane (APTS) under neutral pH and at ambient temperature. It was observed by scanning electron microscopy (SEM) that the diameter of silica spheres formed after silification is approximately 500 nm. BSA is used as test protein to be immobilized into the silica before D-hydantoinase immobilization is taken place. It was shown that BSA concentration as high as 2.5mg/mL could be totally encapsulation. D-hydantoinase of 189.3 mg was immobilized in one gram of dry silica matrix and the efficiency of encapsulated D-hydantoinase in silica matrix was 82.3%. As compared to its free enzyme, its activity was 91.86% and the half-life was 3 times longer at 55 oC. However, upon extended operation the enzyme catalytic activity was decreased significantly due to enzyme leakage and the silica matrix was degraded due to alkaline condition applied during the enzymatic reaction. Glutaraldehyde was then used to form a protection film covering the silica matrix by a reaction with the amine group on silica which is derived from APTS. The enzyme activity yield was reduced to 70% after glutaraldehyde modification and its half life was 3.5 times longer at 55 oC than free enzyme. Moreover, immobilized D-hydantoinase could be reused for 7 times to maintain 92% residual activity. The enzymatic reaction followed Michaelis-Menten equation and the kinetics of the enzyme will be discussed.

目錄 中文摘要………………………………………………………………...Ⅰ 英文摘要.................................................II 致謝……………………………………………………………………..III 目錄……………………………………………………………………..V 表目錄…………………………………………………………………. VIII 圖目錄………………………………………………………………....IX 第一章 緒論……………………………………………………………..1 1-1 研究背景……………………………………………………………...1 1-2 研究內容簡介………………………………………………………...3 第二章 文獻回顧………………………………………………………..4 2.1 D-hydantoinase………………………………………………………..4 2.2 D-hydantoinase固定化..........................................................................7 2.3 溶膠凝膠技術背景與發展沿革……………………………………..11 2.4 溶膠凝膠理論………………………………………………………..11 2.5 影響溶膠凝膠反應的因素…………………………………………..13 2.6 生物礦化(biomineralization) ………………………………………..17 第三章 實驗內容…………………………………………………...…..21 3.1實驗流程…………………………………………………………..…..21 3.2 實驗材料………………………………………………………...……25 3.2.1 菌株……………………………………………………………......25 3.2.2 載體……………………………………………………………......25 3.2.3 D-hydantoinase酵素之引子……………………………………….25 3.2.4 酵素…………………………………………………………….......25 3.2.5 DNA操作試液套件………………………………………………. 25 3.2.6標準分子量試劑……………………………………………………26 3.2.7 HIS-tagged蛋白質純化試劑…………………………………........26 3.3 實驗藥品………………………………………………………………26 3.4實驗培養基及試劑…………………………………………………….27 3.4.1 培養基………………………………………………………….......27 3.4.2 試劑……………………………………………………………... ...27 3.5實驗設備…………………………………………………………...…..29 3.6實驗方法………………………………………………………….…....30 3.6.1 pET30b-hyt質體之建構……………………………………….…...30 3.6.2 質體轉殖入宿主細胞…………………………………………..….35 3.6.3 菌株培養及重組蛋白之生產及取得……………………………...36 3.6.4 重組蛋白之純化…………..……………………………………….36 3.6.5 蛋白質之濃度分析……………………………………………….37 3.6.6 蛋白質電泳分析………………………………………………….37 3.6.7 silica顆粒製備……………………………………………………38 3.6.8 鹽類及pH值緩衝液之牛血清蛋白包埋率……………………..39 3.6.9 不同濃度牛血清蛋白包埋率..…..……………………………….39 3.6.10 D-hydantoinase活性分析(呈色法) ……………………………..40 3.6.11 產物分析………………………………………………………...41 3.6.12 imidazole對D-hydantoinase的影響……………………………...41 3.6.13 固定化D-hydantoinase..................................................................41 3.6.14 pH對蛋白質從silica-hyt溶解出的影響…………………...…..42 3.6.15 戊二醛修飾濃度對活性之影響…………………………….. ....43 3.6.16 固定化酵素活性分析……………………………………..… ....44 3.6.17 最適反應溫度測定………………………………………...…....44 3.6.18 熱穩定性之測定………………………………………...….…...44 3.6.19 重複使用性之測定……………………………………...….…...44 3.6.20 酵素動力學分析…………………………………..……..……...45 3.6.21 電子掃描式顯微鏡(SEM)樣品製備程序…..……………….45 第四章 結果與討論 4.1 D-hydantoinase表現載體之確認………………….………………..47 4.2 D-hydantoinase之表現……………………………………………..48 4.3 HPLC產物分析…………………………………………………….50 4.4 imidazole對D-hydantoinase的影響………………………………52 4.5 silica顆粒的製備…………………………………………………...53 4.6 鹽類及pH值對牛血清蛋白包埋的影響………………………….56 4.7 蛋白濃度對包埋濃度之影響………………………………………57 4.8 D-hydantoinase的固定化...................................................................58 4.9 pH對蛋白質從silica-hyt溶解出的影響……………………………. 62 4.10 戊二醛修飾濃度對活性之影響…………………………………..63 4.11 D-hyt固定化對反應速率之影響………………………………….64 4.12最適反應溫度……………………………………………………...65 4.13 熱穩定性之測定…………………………………………………..66 4.14 重複使用性之測定………………………………………………..66 4.15 酵素動力學分析…………………………………………………..68 第五章 結論…………………………………………………………….71 參考文獻………………………………………………………………….72 表目錄 表2-1 D-hydantoinase的固定化研究……………………………………..10 表2-2 酸性條件下烷氧基矽烷(tetraalkoxysilanes,Si(OR)4)水解常數 ……………………………………………………………………………..15 表4.1固定化D-hydantoinase酵素反應動力學參數……………..….….70 圖目錄 圖 2-1 由D-p-HPG and 6-APA生產Amoxicillin…...……………………...5 圖2-2 酵素法生成D-p-Hydroxyphenylglycine…………………………...6 圖2-3 pH值對膠體(colloid)silica-water系統膠體影響…………………14 圖2-4 氧化矽聚合之性質………………………………………………...14 圖2-5 以氫原子為基準的相對誘導效應大小…………………………...15 圖2-6 不同silane酸水解隨時間變化的相對silane濃度………………….16 圖2-7 silaffins胺基酸序列………………………………………………..18 圖2-8 natSil-1A化學結構…………………………………………………18 圖2-9 long-chain polyamines化學結構…………………………………...18 圖2-10(a) poly-L-lysine化學結構………………………………………...19 圖2-10(b) poly(allylamine hydrochloride) 化學結構…………………….19 圖2-12 小分子催化劑結構圖…………………………………………….20 圖2-13 3-aminopropyl triethoxysilane結構式……………………………...20 圖3.1 實驗流程第一部份D-hydantoinase 之生產表現…………………22 圖3.2 實驗流程第二部份以BSA測試silica沉澱法固定化蛋白質……23 圖3.3 實驗流程第三部份silica沉澱包埋固定化D-hydantoinase………24 圖3.4 pET30b(+)之載體…………………………………………………...25 圖3.5 pET30b-hyt質體之建構流程………………………………………31 圖3.6 silica 顆粒製備流程圖……………………………………………..38 圖3.7 C-p-HPG與C-PG之間的差異……………………………………….40 圖3.8 酵素固定化流程圖………………………………………………...43 圖3.9以Coomassie brilliant blue G-250做出之蛋白質濃度檢量線 ……………………………………………………………………………...46 圖3.10 以Dimethylaminobenzaldehyde做出之NC-D-p-HPG濃度檢量線 .......................................................................................................................46 圖4.1 colony PCR for pET30b-hyt................................................................48 圖4.2.1 E. coli BL21(DE3)/pET30b-hyt 30℃SDS-PAGE電泳結果...........49 圖4.2.2加入IPTG、15℃SDS-PAGE電泳結果............................................50 圖4.3 HPLC產物分析結果...........................................................................51 圖4.4 粗酵素溶液內含不同imidazole濃度對產物生成濃度影響............52 圖4.5.1 酵素催化sol-gel的形成機制.......................................................53 圖4.5.2 酸鹼催化sol-gel的形成機制…………………………………...53 圖4.5.3水解後的TMOS加水解後的APTS產生silica顆粒的電子顯微鏡 ……………………………………………………………………………...54 圖4.5.4 有添加矽酸誘導劑APTS,形成silica 顆粒…………………..55 圖4.5.5 無添加矽酸誘導劑APTS形成gel………………………………55 圖4.6鹽類及pH值對矽酸沉澱包埋牛血清蛋白的影響………………..56 圖4.7牛血清蛋白濃度的包埋的影響……………………………………57 圖4.8.1 直接包埋的示意圖………………………………………………58 圖4.8.2 間接包埋的示意圖………………………………………………58 圖4.8.3添加酵素後所得的silica電子顯微鏡圖…………………………59 圖4.8.4 cysteamine催化TMOS形成silica的電子子顯微鏡圖...............60 圖4.8.5 Polypeptides(R5)催化TMOS形成silica.......................................60 圖4.8.6 APTS所沉澱之矽膠顆粒的X光射線能量散佈分析儀(EDAX) .......................................................................................................................61 圖4.9 pH對蛋白質從silica-hyt溶解出的影響..........................................62 圖4.10戊二醛修飾濃度對活性之影響………………………………......63 圖4.11 D-hyt固定化對反應速率之影響………………………………....64 圖4.12 D-hyt最適反應溫度……………………………………………....65 圖4.13 固定化對D-hydantoinase熱穩定的影響………………………..66 圖4.14 固定化hyt(silica-hyt;silica-ga-hyt)重複操作反應曲線…………66 圖4.15.1 D-hyt反應與基質濃度之關係………………………………….69 圖4.15.2 D-hyt Lineweaver-Burk 雙倒數作圖…………………………...70

參考文獻
網路一 http://en.wikipedia.org/wiki/Inductive_effect
Alan R. Bassindale , Kurt F. Brandstadt , Thomas H. Lane , and Peter G. Taylor(2005) biocatalysis of siloxane bonds. American Chemical Society pp. 164-181
Andrade, J.M., Peres, R.C.D., Oestreicher, E.G., Antunes, O.A.C., Dariva, C. (2008)
Immobilization of d-hydantoinase in polyaniline. Journal of Molecular Catalysis. B, Enzymatic, . Article in Press.
Belton, D., Paine, G., Patwardhan, S.V., Perry, C.C. (2004) Towards an understanding of (bio)silicification: The role of amino acids and lysine oligomers in silicification. Journal of Materials Chemistry, 14 (14), pp. 2231-2241.
Brinker, C.J. (1987) Hydrolysis and condensation of silicates:effects on structure.Journal of Non-Crystalline Solids, 100 (1-3), pp. 31-50.
C.B. Hurd, Chem. Rev.,22 1938,403,422
C.Jeffrey Brinker,George W. Scherer The physics and Chemistry of Sol-Gel Processing .Boston :Academic Press,c1990
Chern, J.-T., Chao, Y.-P. (2005)Chitin-binding domain based immobilization of d-hydantoinase. Journal of Biotechnology, 117 (3), pp. 267-275.
Chen, Y.-C., Yin, B.-D., Lin, S.-C., Hsu, W.-H. (1999) Production of N-carbamoyl-D-hydroxyphenylglycine by D-hydantoinase activity
of a recombinant Escherichia coli.Process Biochemistry, 35 (3-4), pp. 285-290.
G.M.S. Finette, Q.M. Mao and M.T.W. Hearn. (1997) Comparative studies on the isothermal characteristics of proteins adsorbed under batch equilibrium conditions to ion-exchange, immobilized metal ion affinity and dye affinity matrices with different ionic strength and temperature conditions. J. Chromatogr. A. 763, pp. 71–90
H. Dislich,Angewandt Chemie, 10 〔6〕(1971) 363-370
Ho, L.-F., Li, S.-Y., Lin, S.-C., Hsu, W.-H. (2004) Integrated enzyme purification and immobilization processes with immobilized metal affinity adsorbents.Process Biochemistry, 39 (11), pp. 1573-1581.
HM. Ebelmen, Ann. Chimie. Phys, 1846,16,129.
H. Schmidt, H. Scholze, and A. Kaiser, J. Non-Cryst. Solids 63 (1984)
Iler, Ralph K.(1979)The chemistry of silica :solubility, polymerization, colloid and surface properties, and biochemistry
Jin, R.-H., Yuan, J.-J. (2005)Synthesis of poly(ethyleneimine)s-silica hybrid particles with complex shapes and hierarchical structures Chemical Communications, (11), pp. 1399-1401.
Kristian Roth, K.M., Zhou, Y., Yang, W., Morse, D.E. (2005)Bifunctional small molecules are biomimetic catalysts for silica synthesis at neutral pH. Journal of the American Chemical Society, 127 (1), pp. 325-330.
Kröger, N., Deutzmann, R., Sumper, M. (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 286 (5442), pp. 1129-1132.
Kröger, N., Lorenz, S., Brunner, E., Sumper, M. (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis Science, 298 (5593), pp. 584-586.
L. Levene and I.M. Thomas, U.S. Patent 3,640,093 (February 8, 1972)
Lee, S. G., D. D. Lee, and H. S. Kim. (1997) Purification and characterization of thermostable D-hydantoinase from thermophilic Bacillus stearothermphilus SD-1. Appl. Biochem. Biotechnol. 62:251-266.
Louwrier,A. and Knowles,C.J,(1997) The aim of industrial enzymic amoxycillin production: Characterization of a novel carbamoylase enzyme in the form of a crude, cell-free extract. Biotechnol. App. Biochem., 25, 143-149,
Luckarift, H.R., Spain, J.C., Naik, R.R., Stone, M.O. (2004) Enzyme immobilization in a biomimetic silica support Nature Biotechnology, 22 (2), pp. 211-213.
Lukša, V., V. Starkuvienë, B. Starkuvienë, and R. Dagys. (1997)
Purification and characterization of the D-hydantoinase from Bacillus circulans. Appl. Biochem. Biotechnol. 62:219-231.
M.G. Voronkov, V.P. Mileshkevich, and Y.A. Yuzhelevski, The Siloxane Bond (Consultants Bureau, New York, 1978)
Morin, A., W. Hummel, and M. R. Kula. (1986) Production of hydantoinase from Pseudomonas fluorescens strain DSM 84. Appl. Microbiol. Biotechnol. 25:91-96.
Mukohara, Y., T. Ishikawa, K. Watabe, and H. Nakamura. (1994)
A thermostable hydantoinase of Bacillus stearothermophilus NS1122A: cloning, sequencing, and high expression of the enzyme gene, and some properties of the expressed enzyme. Biosci. Biotech. Biochem. 58:1621-1626.
Olivieri R, Fascetti E, Angelini L, Degen L.(1981) Microbial Transformation of Racemic Hydantoins to D-Amino Acids Biotechnol. Bioeng.,23, 2173-2183.
Orcel, Gerard, Hench, Larry.(1986) Effent of formamide addititive on the chemistry of silica sol-gel-part I: NMR of silica hydrolysis. Journal of Non-Crystalline Solids, 79 (1-2), pp. 177-194
Patwardhan, S.V., Clarson, S.J. (2003a) Silicification and Biosilicification Part 7: Poly-L-Arginine Mediated Bioinspired Synthesis of Silica. Journal of Inorganic and Organometallic Polymers, 13 (4), pp. 193-203
Patwardhan, S.V., Clarson, S.J. (2003b) Silicification and biosilicification: Part 5 An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules.
Materials Science and Engineering C, 23 (4), pp. 495-499.
Patwardhan, S.V., Clarson, S.J. (2003c) Silicification and biosilicification: Part 6. Poly-L-histidine mediated synthesis of silica at neutral pH.
Journal of Inorganic and Organometallic Polymers, 13 (1), pp. 49-53.
Patwardhan, S.V., Clarson, S.J. (2002a)Silicification and biosilicification: Part 4. Effect of template size on the formation of silica.Journal of Inorganic and Organometallic Polymers, 12 (3-4), pp. 109-116.
Patwardhan, S.V., Clarson, S.J. (2002b)Silicification and biosilicification: Part 1. Formation of silica structures utilizing a cationically charged synthetic polymer at neutral pH and under ambient conditions
Polymer Bulletin, 48 (4-5), pp. 367-371.
Pope, E.J.A., Mackenzie, J.D. (1986) SOL-GEL PROCESSING OF SILICA. II. THE ROLE OF THE CATALYST.Journal of Non-Crystalline Solids, 87 (1 & 2), pp. 185-198
Runser, S., and E. Ohleyer. (1990) Properties of the hydantoinase from.Agrobacterium sp. IP I-671. Biotechnol. Lett. 12:265-270.
R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc. 72 (1950) 5705.
Shimizu, S., H. Shimada, S. Takahashi, T. Ohashi, Y. Tani, and H. Yamada. (1980) Synthesis of N-carbamyl-D-2-thienylglycine and D-2-thienylglycine by.microbial hydantoinase. Agric. Biol. Chem. 44:2233-2234.
Soong, C. L., J. Orawa, M. Honda, and S. Shimizu. (1999)
Cyclic-imide-hydrolyzing activity of D-hydantoinase from Blastobacter sp. Strain A17 p-4. Appl. Environ. Microbiol. 65: 1459-1462.
Sumper, M., Kröger, N. (2004) Silica formation in diatoms: The function of long-chain polyamines and silaffins. Journal of Materials Chemistry, 14 (14), pp. 2059-2065.
T. Graham, J. Chem. Soc, 1864,17,318.
W.Geffcken and E. Berger, German patent 736 411 (may 1939)

QR CODE